Макс планк биография научные достижения и открытия. Открытия М. Планка, Н. Бора, Э. Резерфорда, В. Паули, Э. Шрёдингера и др. Смартфон и квантовая физика

Нобелевская премия по физике, 1918 г.

Немецкий физик Макс Карл Эрнст Людвиг Планк родился в г. Киле (принадлежавшем тогда Пруссии), в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепьяно и органе, обнаруживая незаурядные музыкальные способности. В 1867 г. семья переехала в Мюнхен, и там П. поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 г. он собирался было изучать классическую филологию, пробовал свои силы в музыкальной композиции, но потом отдал предпочтение физике.

В течение трех лет П. изучал математику и физику в Мюнхенском и год – в Берлинском университетах. Один из его профессоров в Мюнхене, физик-экспериментатор Филипп фон Жолли, оказался плохим пророком, когда посоветовал молодому П. избрать другую профессию, так как, по его словам, в физике не осталось ничего принципиально нового, что можно было бы открыть. Эта точка зрения, широко распространенная в то время, возникла под влиянием необычайных успехов, которых ученые в XIX в. достигли в приумножении наших знаний о физических и химических процессах.

В бытность свою в Берлине П. приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы П. надолго сосредоточивались на термодинамике – области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии. Ученую степень доктора П. получил в 1879 г., защитив в Мюнхенском университете диссертацию о втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому.

На следующий год П. написал еще одну работу по термодинамике, которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета. В 1885 г. он стал адъюнкт-профессором Кильского университета, что упрочило его независимость, укрепило финансовое положение и предоставило больше времени для научных исследований. Работы П. по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 г. он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него). Полным (действительным) профессором он стал в 1892 г.

С 1896 г. П. заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым. При повышении температуры тело сначала раскаляется докрасна, затем становится оранжево-желтым и, наконец, белым. Излучение испускает смесь частот (в видимом диапазоне частота излучения соответствует цвету). Однако излучение тела зависит не только от температуры, но и до некоторой степени от таких характеристик поверхности, как цвет и структура.

В качестве идеального эталона для измерения и теоретических исследований физики приняли воображаемое абсолютное черное тело. По определению, абсолютно черным называется тело, которое поглощает все падающее на него излучение и ничего не отражает. Излучение, испускаемое абсолютно черным телом, зависит только от его температуры. Хотя такого идеального тела не существует, неким приближением к нему может служить замкнутая оболочка с небольшим отверстием (например, надлежащим образом сконструированная печь, стенки и содержимое которой находятся в равновесии при одной и той же температуре).

Одно из доказательств чернотельных характеристик такой оболочки сводится к следующему. Излучение, падающее на отверстие, попадает в полость и, отражаясь от стенок, частично отражается и частично поглощается. Поскольку вероятность того, что излучение в результате многочисленных отражений выйдет через отверстие наружу, очень мала, оно практически полностью поглощается. Излучение, берущее начало в полости и выходящее из отверстия, принято считать эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности абсолютно черного тела при температуре полости и оболочки. Подготавливая собственные исследования, П. прочитал работу Кирхгофа о свойствах такой оболочки с отверстием. Точное количественное описание наблюдаемого распределения энергии излучения в этом случае получило название проблемы черного тела.

Как показали эксперименты с черным телом, график зависимости энергии (яркости) от частоты или длины волны является характеристической кривой. При низких частотах (больших длинах волн) она прижимается к оси частот, затем на некоторой промежуточной частоте достигает максимума (пик с округлой вершиной), а затем при более высоких частотах (коротких длинах волн) спадает. При повышении температуры кривая сохраняет свою форму, но сдвигается в сторону более высоких частот. Были установлены эмпирические соотношения между температурой и частотой пика на кривой излучения черного тела (закон смещения Вина, названный так в честь Вильгельма Вина) и между температурой и всей излученной энергией (закон Стефана – Больцмана, названный так в честь австрийских физиков Йозефа Стефана и Людвига Больцмана), но никому не удавалось вывести кривую излучения черного тела из основных принципов, известных в то время.

Вину удалось получить полуэмпирическую формулу, которую можно подогнать так, что она хорошо описывает кривую при высоких частотах, но неверно передает ее ход при низких частотах. Дж. У. Стретт (лорд Рэлей) и английский физик Джеймс Джинс применили принцип равного распределения энергии по частотам колебаний осцилляторов, заключенных в пространстве черного тела, и пришли к другой формуле (формуле Рэлея – Джинса). Она хорошо воспроизводила кривую излучения черного тела при низких частотах, но расходилась с ней на высоких частотах.

П. под влиянием теории электромагнитной природы света Джеймса Клерка Максвелла (опубликованной в 1873 г. и подтвержденной экспериментально Генрихом Герцем в 1887 г.) подошел к проблеме черного тела с точки зрения распределения энергии между элементарными электрическими осцилляторами, физическая форма которых никак не конкретизируется. Хотя на первый взгляд может показаться, что выбранный им метод напоминает вывод Рэлея – Джинса, П. отверг некоторые из принятых этими учеными допущений.

В 1900 г., после продолжительных и настойчивых попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, П. удалось вывести формулу, которая, как обнаружили физики-экспериментаторы из Государственного физико-технического института, согласовывалась с результатами измерений с замечательной точностью. Законы Вина и Стефана – Больцмана также следовали из формулы Планка. Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами. Энергия планковских осцилляторов изменяется не непрерывно, как следовало бы из традиционной физики, а может принимать только дискретные значения, увеличивающиеся (или уменьшающиеся) конечными шагами. Каждый шаг по энергии равен некоторой постоянной (называемой ныне постоянной Планка), умноженной на частоту. Дискретные порции энергии впоследствии получили название квантов. Введенная П. гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

П. отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия «квант». Для П. квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно черного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно. Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно. Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие, как скорость света и число, известное под названием постоянной Больцмана. В 1901 г., опираясь на экспериментальные данные по излучению черного тела, П. вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, П. сумел с замечательной точностью найти электрический заряд электрона.

Позиции квантовой теории укрепились в 1905 г., когда Альберт Эйнштейн воспользовался понятием фотона – кванта электромагнитного излучения – для объяснения фотоэлектрического эффекта (испускание электронов поверхностью металла, освещаемой ультрафиолетовым излучением). Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна (в чем нас убеждает вся предыдущая физика), и как частица (о чем свидетельствует фотоэлектрический эффект). В 1907 г. Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел – количества тепла, необходимого для того, чтобы поднять на один градус температуру одной единицы массы твердого тела.

Еще одно подтверждение потенциальной мощи введенной П. новации поступило в 1913 г. от Нильса Бора, применившего квантовую теорию к строению атома. В модели Бора электроны в атоме могли находиться только на определенных энергетических уровнях, определяемых квантовыми ограничениями. Переход электронов с одного уровня на другой сопровождается выделением разности энергий в виде фотона излучения с частотой, равной энергии фотона, деленной на постоянную Планка. Тем самым получали квантовое объяснение характеристические спектры излучения, испускаемого возбужденными атомами.

В 1919 г. П. был удостоен Нобелевской премии по физике за 1918 г. «в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии». Как заявил А.Г. Экстранд, член Шведской королевской академии наук, на церемонии вручения премии, «теория излучения П. – самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением». В Нобелевской лекции, прочитанной в 1920 г., П. подвел итог своей работы и признал, что «введение кванта еще не привело к созданию подлинной квантовой теории».

20-е гг. стали свидетелями развития Эрвином Шредингером, Вернером Гейзенбергом, П.А.М. Дираком и другими квантовой механики – оснащенной сложным математическим аппаратом квантовой теории. П. пришлась не по душе новая вероятностная интерпретация квантовой механики, и, подобно Эйнштейну, он пытался примирить предсказания, основанные только на принципе вероятности, с классическими идеями причинности. Его чаяниям не суждено было сбыться: вероятностный подход устоял.

Вклад П. в современную физику не исчерпывается открытием кванта и постоянной, носящей ныне его имя. Сильное впечатление на него произвела специальная теория относительности Эйнштейна, опубликованная в 1905 г. Полная поддержка, оказанная П. новой теории, в немалой мере способствовала принятию специальной теории относительности физиками. К числу других его достижений относится предложенный им вывод уравнения Фоккера – Планка, описывающего поведение системы частиц под действием небольших случайных импульсов (Адриан Фоккер – нидерландский физик, усовершенствовавший метод, впервые использованный Эйнштейном для описания броуновского движения – хаотического зигзагообразного движения мельчайших частиц, взвешенных в жидкости). В 1928 г. в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 г. И на пороге восьмого десятилетия он продолжал исследовательскую деятельность.

Личная жизнь П. была отмечена трагедией. Его первая жена, урожденная Мария Мерк, с которой он вступил в брак в 1885 г. и которая родила ему двух сыновей и двух дочерей-близнецов, умерла в 1909 г. Двумя годами позже он женился на своей племяннице Марге фон Хесслин, от которой у него также родился сын. Старший сын П. погиб в первую мировую войну, а в последующие годы обе его дочери умерли при родах. Второй сын от первого брака был казнен в 1944 г. за участие в неудавшемся заговоре против Гитлера.

Как человек сложившихся взглядов и религиозных убеждений, да и просто как справедливый человек, П. после прихода в 1933 г. Гитлера к власти публично выступал в защиту еврейских ученых, изгнанных со своих постов и вынужденных эмигрировать. На научной конференции он приветствовал Эйнштейна, преданного анафеме нацистами. Когда П. как президент Общества фундаментальных наук кайзера Вильгельма наносил официальный визит Гитлеру, он воспользовался этим случаем, чтобы попытаться прекратить преследования ученых-евреев. В ответ Гитлер разразился тирадой против евреев вообще. В дальнейшем П. стал более сдержанным и хранил молчание, хотя нацисты, несомненно, знали о его взглядах.

Как патриот, любящий родину, он мог только молиться о том, чтобы германская нация вновь обрела нормальную жизнь. Он продолжал служить в различных германских ученых обществах в надежде сохранить хоть какую-то малость немецкой науки и просвещения от полного уничтожения. После того как его дом и личная библиотека погибли во время воздушного налета на Берлин, П. и его жена пытались найти убежище в имении Рогец неподалеку от Магдебурга, где оказались между отступающими немецкими войсками и наступающими силами союзных войск. В конце концов супруги Планк были обнаружены американскими частями и доставлены в безопасный тогда Геттинген.

Скончался П. в Геттингене 4 октября 1947 г., за шесть месяцев до своего 90-летия. На его могильной плите выбиты только имя и фамилия и численное значение постоянной Планка.

Подобно Бору и Эйнштейну, П. глубоко интересовался философскими проблемами, связанными с причинностью, этикой и свободой воли, и выступал на эти темы в печати и перед профессиональными и непрофессиональными аудиториями. Исполнявший обязанности пастора (но не имевший священнического сана) в Берлине, П. был глубоко убежден в том, что наука дополняет религию и учит правдивости и уважительности.

Через всю свою жизнь П. пронес любовь к музыке, вспыхнувшую в нем еще в раннем детстве. Великолепный пианист, он часто играл камерные произведения со своим другом Эйнштейном, пока тот не покинул Германию. П. был также увлеченным альпинистом и почти каждый свой отпуск проводил в Альпах.

Кроме Нобелевской премии, П. был удостоен медали Копли Лондонского королевского общества (1928) и премии Гете г. Франкфурта-на-Майне (1946). Германское физическое общество назвал в честь него свою высшую награду медалью Планка, и сам П. был первым обладателем этой почетной награды. В честь его 80-летия одна из малых планет была названа Планкианой, а после окончания второй мировой войны Общество фундаментальных наук кайзера Вильгельма было переименовано в Общество Макса Планка. П. состоял членом Германской и Австрийской академий наук, а также научных обществ и академий Англии, Дании, Ирландии, Финляндии, Греции, Нидерландов, Венгрии, Италии, Советского Союза, Швеции, Украины и Соединенных Штатов.

Лауреаты Нобелевской премии: Энциклопедия: Пер. с англ.– М.: Прогресс, 1992.
© The H.W. Wilson Company, 1987.
© Перевод на русский язык с дополнениями, издательство «Прогресс», 1992.

] Ответственный редактор Л.С. Полак. Составитель У.И. Франкфурт.
(Москва: Издательство «Наука», 1975. - Серия «Классики науки»)
Скан, обработка, формат: ???, доработка: AAW, mor, 2010

  • СОДЕРЖАНИЕ:
    От редактора (5).
    ТЕРМОДИНАМИКА
    О принципе возрастания энтропии. Первое сообщение (9).
    О принципе возрастания энтропии. Второе сообщение (25).
    О принципе возрастания энтропии. Третье сообщение (36).
    О принципе возрастания энтропии. Четвертое сообщение (69).
    Замечания по поводу принципа Карно - Клаузиуса (102).
    Мистер Суинберн и Энтропия (106).
    Энтропия (109).
    О механическом смысле температуры и энтропии (111).
    О теореме Клаузиуса для необратимых циклов и о возрастании энтропии (119).
    К кинетической теории газов. Критическое исследование (121).
    Об абсолютной энтропии одноатомных тел (123).
    Абсолютная энтропия и химическая константа (138).
    О статистическом определении энтропии (144).
    Новое статистическое определение энтропии (154).
    О разности потенциалов слабых растворов (168).
    О разности потенциалов слабых растворов. Второе сообщение (173).
    Принцип Ле Шателье - Брауна (177).
    Замечания о количественном параметре, параметре интенсивности и стабильном равновесии (186).
    ТЕОРИЯ ИЗЛУЧЕНИЯ И КВАНТОВАЯ ТЕОРИЯ
    О необратимых процессах излучения (191).
    Энтропия и температура лучистой энергии (234).
    Об одном улучшении закона излучения Вина (249).
    К теории распределения энергии излучения нормального спектра (251).
    О законе распределения энергии в нормальном спектре (258).
    Об элементарном кванте материи и электричества (268).
    О необратимых процессах излучения. Дополнение (271).
    Законы теплового излучения и гипотеза Элементарного кванта действия (282).
    Современное значение квантовой гипотезы для кинетической теории газов (311).
    Измененная формулировка квантовой гипотезы (325).
    О квантовых действиях в электродинамике (331).
    Физическая структура фазового пространства (339).
    О природе теплового излучения (370).
    К вопросу о квантовании одноатомного газа (384).
    Физическая реальность световых квантов (393).
    О работах Шредингера по волновой механике (398).
    Попытка синтеза волновой и корпускулярной механики (401).
    Попытка синтеза волновой и корпускулярной механики. Дополнение (417).
    Попытка синтеза волновой и корпускулярной механики. Второе сообщение (419).
    К истории открытия кванта действия (431).
    ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ
    Принцип относительности и основные уравнения механики (445).
    Кауфмановские измерения отклонения b-лучей и их значение для динамики Электронов (449).
    Дополнение к обсуждению измерений Кауфмана (462).
    К динамике движущихся систем (466).
    Замечания о принципе действия и противодействия в общей динамике (494).
    Равномерное вращение и лоренцево сокращение (498).
    СТАТЬИ И РЕЧИ
    О новой физике (501).
    Теоретическая физика (506).
    Генрих Рудольф Герц (510).
    Пауль Друде (531).
    Заслуги Гельмгольца в теоретической физике (553).
    Готфрид Вильгельм Лейбниц (550).
    К 25-летнему юбилею со дня открытия, сделанного В. Фридрихом, П. Книпшшгом и М. Лауэ (561).
    Воспоминания (564).
    Двадцать лет работы над физической картиной мира (568).
    Происхождение и влияние научных идей (590).
    Возникновение и постепенное развитие теории квант (603).
    Единство физической картины мира (613).
    Отношение новейшей физики к механистическому мировоззрению (634).
    Научная автобиография (649).
    Академические речи (664).
    ПРИЛОЖЕНИЕ
    М. Планк и возникновение квантовой физики. Л.С. Полак (685).
    Замечания по поводу одной статьи М. Планка. А.Н. Фрумкин (735).
    Термодинамические работы М. Планка. У.И. Франкфурт (737).
    М. Планк как физико-химик. Ю.И. Соловьев (745).
    Работы М. Планка по специальной теории относительности. И.Я. Итенберг, У.И. Франкфурт (754).
    Философские взгляды М. Планка. Ю.В. Сачков, Э.М. Чудинов (757).
    Библиография (762).
    Именной указатель (781).

Аннотация издательства: В настоящее издание избранных трудов Макса Планка, одного из создателей современной физики, включены статьи по термодинамике, статистической физике, квантовой теории, специальной теории относительности, а также по общим вопросам физики и химии.
Книга представляет интерес для физиков, химиков, историков физики и химии.


Общая механика.

Читателя предлагается книга выдающегося немецкого ученого, нобелевского лауреата по физике Макса Планка (1858-1947), представляющая собой учебник по общей механике.

Автор рассматривает отдельную материальную точку, разделив всю механику на две части: механику материальной точки и механику системы материальных точек. Работа отличается глубиной и ясностью изложения материала и занимает важное место в научном наследии ученого.

Введение в теоретическую физику. Том 2

Механика деформируемых тел.

Настоящая книга, в которой рассматриваются вопросы механики упругого деформируемого тела, представляет собой продолжение курса «Общей механики» выдающегося немецкого физика Макса Планка.

Автор с обычным мастерством, сжато и ясно вводит читателя в круг исследований по теории упругости, гидродинамике и аэродинамике и в теорию вихревых движений. В представлении читателя этой книги механика деформируемых тел должна возникнуть как естественное, обусловленное внутренней необходимостью продолжение общей механики и прежде всего как ряд тесно связанных, логически обоснованных понятий. Это даст возможность не только изучать с полным пониманием более подробные курсы и специальную литературу, но и производить самостоятельные, более глубокие исследования.

Введение в теоретическую физику. Том 3

Теория электричества и магнетизма.

Настоящая книга, написанная выдающимся немецким ученым, основоположником квантовой механики Максом Планком, содержит изложение электрических и магнитных явлений. Работа входит в число монографий по основным разделам теоретической физики, занимающих важное место в научном наследии Планка.

Материал книги отличается глубиной и ясностью описания, благодаря чему она не утратила своего значения и сегодня.

Введение в теоретическую физику. Том 4

Оптика.

В книге выдающегося немецкого физика Макса Планка большое внимание уделено систематическому изложению и развитию основных положений теоретической оптики, представлены их связи с другими отделами физики.

В первых двух частях работы автор рассматривает материю как непрерывную среду с непрерывно меняющимися свойствами. В третьей части при описании дисперсии вводится атомистический метод рассмотрения. Автором также намечен естественный переход к квантовой механике на основе классической теории при помощи соответствующего обобщения.

Введение в теоретическую физику. Том 5

Теория теплоты.

Настоящая книга представляет собой пятый, заключительный том «Введения в теоретическую физику» Макса Планка.

В первых двух частях работы выдающегося немецкого физика излагаются классическая термодинамика и основы теории теплопроводности. Причем теплопроводность рассматривается автором в качестве простейшего примера необратимых процессов. Благодаря такой точке зрения переход от термодинамики к теории теплопроводности оказывается в изложении Планка ясным и естественным.

Третья часть книги целиком посвящена явлениям теплового излучения. В дальнейших главах автор излагает основы атомистики и теории квантов, классическую и квантовую статистику.

Избранные труды

В настоящее издание избранных трудов Макса Планка, одного из создателей современной физики, включены статьи по термодинамике, статистической физике, квантовой теории, специальной теории относительности, а также по общим вопросам физики и химии.

Книга представляет интерес для физиков, химиков, историков физики и химии.

Квантовая теория. Революция в микромире

Макса Планка часто называли революционером, хотя он был против этого.

В 1900 году ученый выдвинул идею о том, что энергия излучается не непрерывно, а в виде порций, или квантов. Отголоском этой гипотезы, перевернувшей сложившиеся представления, стало развитие квантовой механики — дисциплины, которая вместе с теорией относительности лежит в основе современного взгляда на Вселенную.

Квантовая механика рассматривает микроскопический мир, а некоторые ее постулаты настолько удивительны, что сам Планк не единожды признавал: он не успевает за последствиями своих открытий. Учитель учителей, в течение десятилетий он стоял у штурвала немецкой науки, сумев сохранить искру разума в сумрачный период нацизма.

Принцип сохранения энергии

Книга М. Планка «Принцип сохранения энергии» посвящена истории и обоснованию закона сохранения и превращения энергии, — этого важнейшего для обоснования материализма закона природы.

На немецком языке книга издавалась четыре раза; с последнего издания (1921 г.) и сделан настоящий перевод. Первая часть переведена Р.Я. Штейнманом, две остальные — С.Г. Суворовым.

Переводчики не желали при переводе отходить от своеобразного стиля автора, но в некоторых случаях, когда отдельные фразы оригинала распространялись на целую страницу, все же вынуждены были этот стиль «облегчать».

Кое-какие ссылки Планка на конкретные физические исследования уже устарели. Поэтому в издании 1908 г. Планк сделал ряд дополнительных замечаний. Такие замечания, — впрочем, не принципиального характера, — можно было бы несколько умножить. Третье и четвертое издания Планк оставил без изменений сравнительно со вторым. Переводчики также считали возможным ограничиться дополнениями самого автора ко второму изданию.

Более существенным является отсутствие в переизданиях истории закона сохранения и превращения энергии за последние пятьдесят лет, весьма важные для его развития. Исчерпать эту историю отдельными замечаниями переводчики, разумеется, не могли бы; она требует самостоятельного исследования, выходящего за рамки настоящей работы. Однако, некоторые весьма существенные моменты последующего развития закона, а именно, борьба различных направлений в физике вокруг оценки значения закона и его трактовки,- освещены в статье С.Г. Суворова. В ней же читатель найдет и оценку книги М. Планка.

Планк (Planck) Макс (1858-1947), немецкий физик, один из основоположников квантовой теории, иностранный член-корреспондент Петербургской АН (1913) и почетный член АН СССР (1926). Ввел (1900) квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения, назван его именем. Труды по термодинамике, теории относительности, философии естествознания. Нобелевская премия (1918).

Планк Макс (1858-1947) - немецкий физик-теоретик, разрабатывал термодинамическую теорию теплового излучения. Планк ввел для его объяснения новую универсальную постоянную h - квант действия. Благодаря этому было установлено, что распространение света, его излучение и поглощение происходят дискретно, определенными порциями - квантами. Открытие этой константы ознаменовало переход из макромира в качественно новую область - мир квантовых явлений, микромир. Тем самым Планк явился основоположником квантовой теории, которая установила момент прерывности (дискретности) в энергетических процессах и распространила идею атомизма на все явления природы. Занимая стихийно-материалистическую позицию по ряду коренных вопросов науки, Планк резко критиковал эмпириокритицизм.

Философский словарь. Под ред. И.Т. Фролова. М., 1991, с. 343.

Планк Макс Карл Эрнст Людвиг

Немецкий физик Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка. В 1867 году семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию. По окончании гимназии в 1874 году он отдал предпочтение физике.

В течение трех лет Планк изучал математику и физику в Мюнхенском и год в Берлинском университетах. Ученую степень доктора Планк получил в 1879 году, защитив в Мюнхенском университете диссертацию "О втором законе механической теории тепла" - втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому. Через год он защитил диссертацию "Равновесное состояние изотропных тел при различных температурах", которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета.

В 1885 году он стал адъюнкт-профессором Кильского университета. В 1888 году он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него).

С 1887 по 1924 год Планк опубликовал ряд работ по термодинамике физико-химических процессов. Особую известность получила созданная им теория химического равновесия разведенных растворов. В 1897 году вышло первое издание его лекций по термодинамике. К тому времени Планк был уже ординарным профессором Берлинского университета и членом Прусской академии наук.

В 1896 году Планк установил на основе эксперимента закон теплового излучения нагретого тела. При этом он столкнулся с тем, что излучение имеет прерывный характер. Планк смог обосновать свой закон лишь с помощью предположения, что энергия колебания атомов не произвольная, а может принимать лишь ряд вполне определенных значений. Оказалось, что прерывность присуща любому излучению, что свет состоит из отдельных порций (квантов) энергии.

Планк установил, что свет с частотой колебания должен испускаться и поглощаться порциями, причем энергия каждой такой порции равна частоте колебания умноженной на специальную константу, получившую название постоянной Планка.

14 декабря 1900 года Планк доложил Берлинскому физическому обществу о своей гипотезе и новой формуле излучения. Введенная Планком гипотеза ознаменовала рождение квантовой теории. В 1906 году вышла монография Планка "Лекции по теории теплового излучения".

В 1901 году, опираясь на экспериментальные данные по излучению черного тела, Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, Планк сумел с высочайшей точностью найти электрический заряд электрона.

В 1919 году Планк был удостоен Нобелевской премии по физике за 1918 год "в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии". В Нобелевской лекции, прочитанной в 1920 году, Планк подвел итог своей работы и признал, что "введение кванта еще не привело к созданию подлинной квантовой теории".

К числу других его достижений относится предложенный им вывод уравнения Фоккера-Планка, описывающего поведение системы частиц под действием небольших случайных импульсов. В 1928 году в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 году.

Исполнявший обязанности пастора (но не имевший священнического сана) в Берлине, Планк был глубоко убежден в том, что наука дополняет религию и учит правдивости и уважительности.

Планк состоял членом Германской и Австрийской академий наук, а также научных обществ и академий Англии, Дании, Ирландии, Финляндии, Греции, Нидерландов, Венгрии, Италии, Советского Союза, Швеции и Соединенных Штатов. Германское физическое общество назвало в честь него свою высшую награду медалью Планка, и сам ученый стал первым обладателем этой почетной награды. Скончался Планк в Геттингене 4 октября 1947 года, за шесть месяцев до своего девяностолетия.

Использованы материалы сайта http://100top.ru/encyclopedia/

Далее читайте:

Ученые с мировым именем (биографический справочник).

ПЛАНК, МАКС (Planck, Max) (1858–1947), немецкий физик-теоретик, основоположник квантовой теории. Родился 23 апреля 1858 в Киле. Учился в Мюнхенском и Берлинском университетах, в последнем прослушал курс лекций физиков Гельмгольца и Кирхгофа и математика Вейерштрасса. А это же время тщательно проработал труды по термодинамике Клаузиуса, во многом определившие направление исследований Планка в эти годы. В 1879 стал доктором философии, представив к защите диссертацию О втором законе механической теплоты . В своей диссертационной работе рассмотрел вопрос о необратимости процесса теплопроводности и дал первую общую формулировку закона возрастания энтропии. Через год после защиты получил право на преподавание теоретической физики и пять лет читал этот курс в Мюнхенском университете. В 1885 стал профессором теоретической физики Кильского университета. Самой значительной его публикацией в этот период стала книга Принцип сохранения энергии , получившая премию на конкурсе философского факультета Гёттингенского университета. В 1889 Планк был приглашен в Берлинский университет на должность экстраординарного профессора, через три года был назначен ординарным профессором. В первые годы пребывания в Берлине занимался вопросами теории теплоты, электро- и термохимией, равновесием в газах и разбавленных растворах.

В 1896 Планк начал свои классические исследования в области теплового излучения. Занявшись решением задачи о распределении энергии в спектре излучения абсолютно черного тела, он в 1900 вывел полуэмпирическую формулу, которая при высоких температурах и больших длинах волн удовлетворительно описывала экспериментальные данные Курлбаума и Рубенса, а при коротких волнах и низких температурах переходила в закон Вина. В процессе теоретического обоснования своей формулы Планк пришел к ошеломляющему выводу: он обнаружил, что уравнение справедливо только при одном совершенно новом представлении, а именно: при излучении энергия испускается или поглощается не непрерывно и не в любых количествах, а лишь неделимыми порциями – «квантами». При этом энергия кванта пропорциональна частоте колебания и новой фундаментальной постоянной, имеющей размерность действия. Сейчас эту фундаментальную константу называют постоянной Планка. День 14 декабря 1900, когда Планк доложил в Немецком физическом обществе о теоретическом выводе закона излучения, стал датой рождения квантовой теории и новой эры в естествознании. Впрочем, теория, предложенная Планком как обоснование выведенной им формулы, не привлекала внимания ученых вплоть до 1905, когда революционную идею квантов использовал А.Эйнштейн, распространив ее на сам процесс излучения и предсказав существование фотона. В 1918 Планк был удостоен за свою теорию Нобелевской премии по физике. Сам же ученый на закате жизни признал, что много лет подряд пытался «как-нибудь встроить квант действия в систему классической физики», однако это ему не удалось.

Большое значение имели работы Планка по теории относительности. В 1906 он вывел уравнения релятивистской динамики, получив выражения для энергии и импульса электрона.

В 1926 Планк оставил свой пост в Берлинском университете (где его преемником стал Э.Шрёдингер), но продолжал активно участвовать в его научной жизни, а также читал публичные лекции по физике. В 1912–1938 он был непременным секретарем Берлинской АН, долгое время был президентом Общества кайзера Вильгельма (с 1948 – Общество Макса Планка). Будучи обязанным по должности засвидетельствовать свое почтение Гитлеру, имел в 1933 беседу с ним, которую пытался использовать для того, чтобы предотвратить массовое увольнение ученых-евреев.

Во время Второй мировой войны Планк перенес немало лишений. Последние годы его жизни были омрачены гибелью сына, казненного за участие в покушении на Гитлера 20 июля 1944. Умер Планк в Гёттингене 4 октября 1947.

Среди многочисленных трудов ученого – Лекции по теории теплового излучения (Vorlesungen über die Theorie der Warmestrahlung , 1906), Введение в теоретическую физику (Einführung in die theoretische Physik , Bd. 1–5, 1916–1930), Пути физического познания (Wege zur physikalischen Erkenntnis , 1933).