Решить дробно рациональное неравенство онлайн. Дробно-рациональные неравенства. Как осуществляется решение системы неравенств

Неравенство это выражение с, ≤, или ≥. Например, 3x - 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно. Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений . Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами .

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств
Для любых вещественных чисел a, b, и c :
Принцип прибавления неравенств : Если a Принцип умножения для неравенств : Если a 0 верно, тогда ac Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами .

Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x - 5 b) 13 - 7x ≥ 10x - 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x - 5 и y 2 = 6 - 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и , или , тогда формируется двойное неравенство . Двойное неравенство, как
-3 и 2x + 5 ≤ 7
называется соединённым , потому что в нём использовано и . Запись -3 Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2 Решите -3 Решение У нас есть

Множество решений {x|x ≤ -1 или x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x - 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или x > 3}, y 1 ≤ y 2 или y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| |x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x| |y| ≥ 1 эквивалентно y ≤ -1 или y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4 Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2| b) |5 - 2x| ≥ 1

Решение
a) |3x + 2|

Множеством решением есть {x|-7/3
b) |5 - 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или x ≥ 3}, или (-∞, 2] .

Третий пример. |1 - х| > 2 |х - 1|.

Решение. Первым делом нужно определить точки, в которых функции обращаются в ноль. Для левого этим числом будет 2, для правого — 1. их нужно отметить на луче и определить промежутки знакопостоянства.

На первом интервале, от минус бесконечности до 1, функция из левой части неравенства принимает положительные значения, а из правой — отрицательные. Под дугой нужно записать рядом два знака «+» и «-».

Следующий промежуток от 1 до 2. На нем обе функции принимают положительные значения. Значит, под дугой два плюса.

Третий интервал от 2 до бесконечности даст такой результат: левая функция — отрицательная, правая — положительная.

С учетом получившихся знаков нужно вычислить значения неравенства для всех промежутков.

На первом получается такое неравенство: 2 - х > - 2 (х - 1). Минус перед двойкой во втором неравенстве получился из-за того, что эта функция отрицательная.

После преобразования неравенство выглядит так: х > 0. Оно сразу дает значения переменной. То есть из этого интервала в ответ пойдет только промежуток от 0 до 1.

На втором: 2 - х > 2 (х - 1). Преобразования дадут такое неравенство: -3х + 4 больше ноля. Его нулем будет значение х = 4/3. С учетом знака неравенства получается, что х должен быть меньше этого числа. Значит, этот интервал уменьшается до промежутка от 1 до 4/3.

Последний дает такую запись неравенства: - (2 - х) > 2 (х - 1). Его преобразование приводит к такому: -х > 0. То есть уравнение верно при х меньшем ноля. Это значит, что на искомом промежутке неравенство не дает решений.

На первых двух промежутках граничным оказалось число 1. Его нужно проверить отдельно. То есть подставить в исходное неравенство. Получается: |2 - 1| > 2 |1 - 1|. Подсчет дает что 1 больше 0. Это верное утверждение, поэтому единица входит в ответ.

Ответ: х лежит в промежутке (0; 4/3).

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Здравствуйте! Дорогие мои ученики, в этой статье мы научимся с вами решать показательные неравенства.

Каким бы сложным не показалось вам показательное неравенство, после некоторых преобразований (о них мы поговорим чуть позже) все неравенства сводятся к решению простейших показательных неравенств :

а х > b , a x < b и a x ≥ b , a x ≤ b .

Давайте попробуем разобраться как же решаются такие неравенства.

Мы рассмотрим решение строгих неравенств . Отличие при решении нестрогих неравенств заключается только в том, что полученные соответствующие корни включаются в ответ.

Пусть надо решить неравенство вида а f (x) > b , где a>1 и b>0 .

Посмотрите на схему решения таких неравенств (рисунок 1):

Сейчас рассмотрим конкретный пример. Решить неравенство: 5 х – 1 > 125 .

Так как 5 > 1 и 125 > 0, то
х – 1 > log 5 125, то есть
х – 1 > 3,
х > 4.

Ответ: (4; +∞) .

А каким же будет решение этого же неравенства а f (x) >b , если 0 и b>0 ?

Итак, схема на рисунке 2

Пример: Решить неравенство (1/2) 2x - 2 4

Применяя правило (рисунок 2), получаем
2х – 2 ≤ log 1/2 4,
2х – 2 ≤ –2,
2х ≤ 0,
х ≤ 0.

Ответ: (–∞; 0] .

Снова рассмотрим это же неравенство а f (x) > b , если a>0 и b<0 .

Итак, схема на рисунке 3:


Пример решения неравенства (1/3) х + 2 > –9 . Как мы замечаем, какое бы число мы не подставили вместо х, (1/3) х + 2 всегда больше нуля.

Ответ: (–∞; +∞) .

А как же решаются неравенства вида а f (x) < b , где a>1 и b>0 ?

Схема на рисунке 4:

И следующий пример: 3 3 – х ≥ 8 .
Поскольку 3 > 1 и 8 > 0, то
3 – х > log 3 8, то есть
–х > log 3 8 – 3,
х < 3 – log 3 8.

Ответ: (0; 3–log 3 8) .

Как же измениться решение неравенства а f (x) < b , при 0 и b>0 ?

Схема на рисунке 5:

И следующий пример: Решить неравенство 0,6 2х – 3 < 0,36 .

Cледуя схеме на рисунке 5, получаем
2х – 3 > log 0,6 0,36 ,
2х – 3 > 2,
2х > 5,
х > 2,5

Ответ: (2,5; +∞) .

Рассмотрим последнюю схему решения неравенства вида а f (x) < b , при a>0 и b<0 , представленную на рисунке 6:

Например, решим неравенство:

Замечаем, что какое бы число мы не подставили вместо х, левая часть неравенства всегда больше нуля, а у нас это выражение меньше -8, т.е. и нуля, значит решений нет.

Ответ: решений нет .

Зная как решаются простейшие показательные неравенства, можно приступить и к решению показательных неравенств .

Пример 1.

Найти наибольшее целое значение х, удовлетворяющее неравеству

Так как 6 х больше нуля (ни при каком х знаменатель в ноль не обращается), умножим обе части неравенства на 6 х, получим:

440 – 2· 6 2х > 8, тогда
– 2· 6 2х > 8 – 440,
– 2· 6 2х > – 332,
6 2х < 216,
2х < 3,

x < 1,5. Наибольшее целое число из помежутка (–∞; 1,5) это число 1.

Ответ: 1 .

Пример 2 .

Решить неравенство 2 2 x – 3·2 x + 2 ≤ 0

Обозначим 2 х через у, получим неравенство у 2 – 3у + 2 ≤ 0, решим это квадратное неравенство.

у 2 – 3у +2 = 0,
у 1 = 1 и у 2 = 2.

Ветви параболы направлены вверх, изобразим график:

Тогда решением неравенства будет неравенство 1 < у < 2, вернемся к нашей переменной х и получим неравенство 1< 2 х < 2, решая которое и найдем ответ 0 < x < 1.

Ответ: (0; 1) .

Пример 3 . Решите неравенство 5 x +1 – 3 x +2 < 2·5 x – 2·3 x –1
Соберем выражения с одинаковыми основаниями в одной части неравенства

5 x +1 – 2·5 x < 3 x +2 – 2·3 x –1

Вынесем в левой части неравенства за скобки 5 x , а в правой части неравенства 3 х и получим неравенство

5 х (5 – 2) < 3 х (9 – 2/3),
3·5 х < (25/3)·3 х

Разделим обе части неравенства на выражение 3·3 х, знак неравенства не изменится, так как 3·3 х положительное число, получим неравенство:

х < 2 (так как 5/3 > 1).

Ответ: (–∞; 2) .

Если у вас возникнут вопросы по решению показательных неравенств или вы захотите попрактиковаться в решении подобных примеров, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Вида ах 2 + bх + 0 0, где (вместо знака > может быть, разумеется, любой другой знак неравенства). Всеми необходимыми для решения таких неравенств фактами теории мы с вами располагаем, в чем сейчас и убедимся.

Пример 1 . Решить неравенство:

а) х 2 - 2х - 3 >0; б) х 2 - 2х - 3 < 0;
в) х 2 - 2х - 3 > 0; г) х 2 - 2х - 3 < 0.
Решение,

а) Рассмотрим параболу у = х 2 - 2х - 3, изображенную на рис. 117.

Решить неравенство х 2 - 2х - 3 > 0 - это значит ответить на вопрос, при каких значениях х ординаты точек параболы положительны.

Замечаем, что у > 0, т. е. график функции расположен выше оси х, при х < -1 или при х > 3.

Значит, решениями неравенства служат все точки открытого луча (- 00 , - 1), а также все точки открытого луча (3, +00).

Используя знак U (знак объединения множеств), ответ можно записать так: (-00 , - 1) U (3, +00). Впрочем, ответ можно записать и так: х < - 1; х > 3.

б) Неравенство х 2 - 2х - 3 < 0, или у < 0, где у = х 2 - 2х - 3, также можно решить с помощью рис. 117: график расположен ниже оси х, если -1 < х < 3. Поэтому решениями данного неравенства служат все точки интервала (- 1, 3).

в) Неравенство х 2 - 2х - 3 > 0 отличается от неравенства х 2 - 2х - 3 > 0 тем, что в ответ надо включить и корни уравнения х 2 - 2х - 3 = 0, т. е. точки х = -1

и х = 3. Таким образом, решениями данного нестрогого неравенства являются все точки луча (-00 , - 1], а также все точки луча .

Практичные математики обычно говорят так: зачем нам, решая неравенство ах 2 + bх + с > 0, аккуратно строить параболу график квадратичной функции

у = ах 2 + bх + с (как это было сделано в примере 1)? Достаточно сделать схематический набросок графика, для чего следует лишь найти корни квадратного трехчлена (точки пересечения параболы с осью х) и определить, куда направлены ветви параболы - вверх или вниз. Этот схематический набросок даст наглядное истолкование решению неравенства.

Пример 2. Решить неравенство - 2х 2 + Зх + 9 < 0.
Решение.

1) Найдем корни квадратного трехчлена - 2х 2 + Зх + 9: х 1 = 3; х 2 = - 1,5.

2) Парабола, служащая графиком функции у = -2х 2 + Зх + 9, пересекает ось х в точках 3 и - 1,5, а ветви параболы направлены вниз, поскольку старший коэффициент - отрицательное число - 2. На рис. 118 представлен набросок графика.

3) Используя рис. 118, делаем вывод: у < 0 на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче C, +оо).
Ответ: х < -1,5; х > 3.

Пример 3. Решить неравенство 4х 2 - 4х + 1 < 0.
Решение.

1) Из уравнения 4х 2 - 4х + 1 = 0 находим .

2) Квадратный трехчлен имеет один корень ; это значит, что парабола, служащая графиком квадратного трехчлена, не пересекает ось х, а касается ее в точке . Ветви параболы направлены вверх (рис. 119.)

3) С помощью геометрической модели, представленной на рис. 119, устанавливаем, что заданное неравенство выполняется только в точке , поскольку при всех других значениях х ординаты графика положительны.
Ответ: .
Вы, наверное, заметили, что фактически в примерах 1, 2, 3 использовался вполне определенный алгоритм решения квадратных неравенств, оформим его.

Алгоритм решения квадратного неравенства ах 2 + bх + 0 0 (ах 2 + bх + с < 0)

На первом шаге этого алгоритма требуется найти корни квадратного трехчлена. Но ведь корни могут и не существовать, что же делать? Тогда алгоритм неприменим, значит, надо рассуждать как-то по-другому. Ключ к этим рассуждениям дают следующие теоремы.

Иными словами, если D < 0, а > 0, то неравенство ах 2 + bх + с > 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с < 0 не имеет решений.
Доказательство. Графиком функции у = ах 2 + bх + с является парабола, ветви которой направлены вверх (поскольку а > 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 120. Видим, что при всех х график расположен выше оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с > 0, что и требовалось доказать.

Иными словами, если D < 0, а < 0, то неравенство ах 2 + bх + с < 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с > 0 не имеет решений.

Доказательство. Графиком функции у = ах 2 + bх +с является парабола, ветви которой направлены вниз (поскольку а < 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 121. Видим, что при всех х график расположен ниже оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с < 0, что и требовалось доказать.

Пример 4 . Решить неравенство:

а) 2х 2 - х + 4 >0; б) -х 2 + Зх - 8 >0.

а) Найдем дискриминант квадратного трехчлена 2х 2 - х + 4. Имеем D = (-1) 2 - 4 2 4 = - 31 < 0.
Старший коэффициент трехчлена (число 2) положителен.

Значит, по теореме 1, при всех х выполняется неравенство 2x 2 - х + 4 > 0, т. е. решением заданного неравенства служит вся (-00 , + 00).

б) Найдем дискриминант квадратного трехчлена - х 2 + Зх - 8. Имеем D = З2 - 4 (- 1) (- 8) = - 23 < 0. Старший коэффициент трехчлена (число - 1) отрицателен. Следовательно, по теореме 2, при всех х выполняется неравенство - х 2 + Зx - 8 < 0. Это значит, что неравенство - х 2 + Зх - 8 0 не выполняется ни при каком значении х, т. е. заданное неравенство не имеет решений.

Ответ: а) (-00 , + 00); б) нет решений.

В следующем примере мы познакомимся еще с одним способом рассуждений, который применяется при решении квадратных неравенств.

Пример 5. Решить неравенство Зх 2 - 10х + 3 < 0.
Решение. Разложим квадратный трехчлен Зx 2 - 10x + 3 на множители. Корнями трехчлена являются числа 3 и , поэтому воспользовавшись ах 2 + bх + с = а (х - x 1)(x - х 2),получим Зx 2 - 10х + 3 = 3(х - 3) (х - )
Отметим на числовой прямой корни трехчлена: 3 и (рис. 122).

Пусть х > 3; тогда x-3>0 и x->0, а значит, и произведение 3(х - 3)(х - ) положительно. Далее, пусть < х < 3; тогда x-3< 0, а х- >0. Следовательно, произведение 3(х-3)(х-) отрицательно. Пусть, наконец, х <; тогда x-3< 0 и x- < 0. Но в таком случае произведение
3(x -3)(x -) положительно.

Подводя итог рассуждениям, приходим к выводу: знаки квадратного трехчлена Зx 2 - 10х + 3 изменяются так, как показано на рис. 122. Нас же интересует, при каких х квадратный трехчлен принимает отрицательные значения. Из рис. 122 делаем вывод: квадратный трехчлен Зx 2 - 10х + 3 принимает отрицательные значения для любого значения х из интервала (, 3)
Ответ (, 3), или < х < 3.

Замечание. Метод рассуждений, который мы применили в примере 5, обычно называют методом интервалов (или методом промежутков). Он активно используется в математике для решения рациональных неравенств. В 9-м классе мы изучим метод интервалов более детально.

Пример 6 . При каких значениях параметра р квадратное уравнение х 2 - 5х + р 2 = 0:
а) имеет два различных корня;

б) имеет один корень;

в) не имеет -корней?

Решение. Число корней квадратного уравнения зависит от знака его дискриминанта D. В данном случае находим D = 25 - 4р 2 .

а) Квадратное уравнение имеет два различных корня, если D>0, значит, задача сводится к решению неравенства 25 - 4р 2 > 0. Умножим обе части этого неравенства на -1 (не забыв изменить при этом знак неравенства). Получим равносильное неравенство 4р 2 - 25 < 0. Далее имеем 4 (р - 2,5) (р + 2,5) < 0.

Знаки выражения 4(р - 2,5) (р + 2,5) указаны на рис. 123.

Делаем вывод, что неравенство 4(р - 2,5)(р + 2,5) < 0 выполняется для всех значений р из интервала (-2,5; 2,5). Именно при этих значениях параметра р данное квадратное уравнение имеет два различных корня.

б) квадратное уравнение имеет один корень, если D - 0.
Как мы установили выше, D = 0 при р = 2,5 или р = -2,5.

Именно при этих значениях параметра р данное квадратное уравнение имеет только один корень.

в) Квадратное уравнение не имеет корней, если D < 0. Решим неравенство 25 - 4р 2 < 0.

Получаем 4р 2 - 25 > 0; 4 (р-2,5)(р + 2,5)>0, откуда (см. рис. 123) р < -2,5; р > 2,5. При этих значениях параметра р данное квадратное уравнение не имеет корней.

Ответ: а) при р (-2,5, 2,5);

б) при р = 2,5 илир = -2,5;
в) при р < - 2,5 или р > 2,5.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Помощь школьнику онлайн , Математика для 8 класса скачать , календарно-тематическое планирование