Общие сведения о крахмале. Крахмал Амилоза состав строение тип связи

Полисахарид, содержащий остатки моносахарида одного вида, называют гомополисахаридом.

По своему функциональному назначению гомополисахариды могут быть разделены на две группы: структурные и резервные полисахариды. Важным структурным гомополисахаридом является целлюлоза, а главными резервными – гликоген и крахмал.

Крахмал представляет собой смесь 2 гомополисахаридов: линейного – амилозы и разветвленного – амилопектина, общая формула которых (С6Н10О5)n. Как правило, содержание амилозы в крахмале составляет 10–30%, амилопектина – 70–90%.

Амилоза - полисахарид крахмала, состоящий преимущественно из линейных или слаборазветвлённых цепочек, образованных остатками α-глюкозы, соединённых гликозидными связями между первым и четвертым углеродными атомами. Цепь амилозы включает от 200 до 1000 моносахаридных единиц. Вследствие аксиального положения гликозидной связи макромолекула амилозы свернута в спираль. Ее коллоидные частицы (мицеллы) дают с йодом характерное синее окрашивание.

Амилопектин – разветвленный полисахарид, построенный из остатков α-глюкозы, которые связаны в основной цепи α-1,4-гликозидными, а в местах разветвлений - α-1,6-гликозидными связями:


Амилоза и амилопектин формируются в растениях в виде крахмальных зерен.

Применяют крахмал как наполнитель, а в хирургии – для приготовления неподвижных повязок. Он широко используется в присыпках, мазях, пастах вместе с цинка оксидом, тальком. Внутрь крахмал применяют как обволакивающее средство при желудочно-кишечных заболеваниях.

Гликоген - разветвлённый гомополимер глюкозы (животный крахмал), в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления мономеры соединены α-1,6-гликозидными связями. По строению он подобен амилопектину, но имеет еще большее разветвление цепей, что способствует выполнению энергетической функции. Откладывается как энергетический запас в клетках преимущественно животных организмов, встречается также в малых количествах в тканях растений и грибов; Гликоген содержится почти во всех органах и тканях животных и человека, но больше всего в печени и в мышцах. Это резервный углевод.

Целлюлоза – самый распространенный растительный полисахарид. Выполняет функцию опорного материала растений. Это линейный полисахарид, построенный из остатков β-глюкозы, связанных β-1,4-гликозидными связями. Структурным элементом целлюлозы является целлобиоза.

Целлюлоза является одним из структурных компонентов

Крахмал - растительный полисахарид, синтезируемый в хлоропластах в процессе фотосинтеза и выполняющий энергетическую функцию. Формула крахмала аналогична формуле целлюлозы - (C 6 H 10 O 5) n .

Строение

Крахмал имеет сложное химическое строение, являясь смесью двух основных полисахаридов:

  • амилозы - 10-20 %;
  • амилопектина - 90-80 %.

Каждый полисахарид состоит из мономера - α-глюкозы. Звенья амилозы и амилопектина соединены в цепочки посредством α(1→4)-гликозидными связями.

Молекула амилозы имеет линейную структуру, состоящую из 200-1000 структурных единиц. Цепь закручивается в спираль. На каждый виток приходится по шесть остатков глюкозы.

Рис. 1. Структурная формула амилозы.

Амилопектин представляет собой разветвлённую цепь, включающую от шести до 40 тысяч звеньев. Разветвление цепочки обусловлено α(1→6)-гликозидными связями через 20-25 остатков глюкозы.

Рис. 2. Структурная формула амилопектина.

Помимо полисахаридов в крахмал входят неорганические вещества (остатки фосфорной кислоты), липиды, жирные кислоты.

Нахождение в природе и получение

Крахмал образуется в процессе фотосинтеза в результате полимеризации глюкозы:

  • 6CO 2 + 6H 2 O (свет, хлорофилл) → C 6 H 12 O 6 + 6O 2 ;
  • nC 6 H 12 O 6 → (C 6 H 10 O 5) n + nH 2 O.

Крахмал - главная составляющая семян растений. Он используется в качестве резерва энергии. Больше всего крахмала содержится в эндосперме злаков (до 85 %) и в клубнях картофеля (20 %).

Крахмал находится в клетках в виде зёрен, форма которых зависит от вида растений. Крахмальные зёрна представляют собой слоистые крупицы. Они растут за счёт наложения новых слоёв крахмала на старые слои. Зёрна откладываются в специальных клетках растений (разновидностях лейкопластах) - амилопластах.

Рис. 3. Примеры крахмальных зёрен.

В пищевой и промышленной химии крахмал чаще всего выделяют из картофеля. Для этого клубни измельчают, промывают и отстаивают. Всплывший на поверхность крахмал собирают, промывают и сушат до образования кристаллов.

Крахмал не синтезируется в организме животных. Аналогичным энергетическим веществом животных клеток является гликоген.

Свойства

Крахмал представляет собой белый кристаллический безвкусный порошок. В холодной воде порошок не растворим. При взаимодействии с горячей водой растворяется амилоза, а амилопектин разбухает, образуя клейстер. Если растереть кристаллики между пальцами, можно услышать скрип.

При нагревании крахмал подвергается гидролизу под действием катализаторов. Гидролиз протекает ступенчато. Из крахмала образуется декстрин, который гидролизуется до мальтозы. В результате гидролиза мальтозы образуется глюкоза. Общее уравнение:

(C 6 H 10 O 5)n + nH 2 O (H 2 SO 4) → nC 6 H 12 O 6 .

Качественной реакцией является окрашивание в синий цвет под действием йода.

Реакции серебряного зеркала и восстановления гидроксида меди не идут.

Крахмал употребляют в пищу вместе с растительными продуктами - картофелем, мукой, кукурузой. Также используют для изготовления клея.

Что мы узнали?

Крахмал - сложное вещество, растительного происхождения. Состоит из органических и неорганических веществ, включает два полисахарида - амилозу и амилопектин. Каждый полисахарид состоит из одинаковых остатков глюкозы. Образуется в растениях в результате фотосинтеза и накапливается в форме зёрен. При взаимодействии с водой разбухает, образуя клейстер. Гидролизуется при нагревании в присутствии катализатора до глюкозы.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 233.

краткое содержание других презентаций

«Влияние магнитного поля на организм» - Данный прибор предназначен для лечения заболеваний относящихся к ЛОР. 24.11.07. 28.11.07. Влияние магнитной воды на растения. 26.11.07. Цель: Выявить полезные свойства магнитной терапии и магнитных припаратов. Теоретическое исследование; Интервьюирование; Социологический опрос; Наблюдение; Обобщение. Цель: Определить влияние омагниченной воды на рост и развитие растений. В одном стакане была омагниченная вода, а в другом проточная вода. Через неделю, мы наблюдали результат, который представлен на данном рисунке.

«Генетика пола по биологии» - Содержание понятно, удобно для восприятия. ((!!)). Вариативна по способам представления информации / рисунки, схемы, таблицы/. Гаметы. СПб АППО Центр информатизации образования. Аутосомы – хромосомы, одинаковые у мужчин и женщин. Половые хромосомы - 6. 3-я пара. Наследование гемофилии - 13. Определение пола –7,8. Содержание. Хромосомы, различные у мужчин и женщин, называются половыми. Гены, сцепленные с полом - 12. 1-ая пара. Х х.

«Минеральные вещества» - Оптимальное количество 15-20 мг в день для мужчин, 12-18 мг в день для женщин. Ежедневно необходимо принимать еще 2 мг меди, при больших физических нагрузках - 3 мг. Витамин D и кальций важны для правильного функционирования фосфора. Облегчит соблюдение диеты, сжигая избыточный жир. В организме содержится резерв - 100-200 мг меди. Присутствует в каждой клетке тела. Заболевания, вызываемые дефицитом фтора: Разрушение зубов. Способствует правильному росту. Важен для правильной работы сердца. Кальций:

«Дефекты зрения» - Пучок лучей сходится за сетчаткой. Аккомодация глаза. Задачи исследования. Строение глаза. ПРОВОДИТЬ УПРАЖн ЕНИЯ ДЛЯ РАЗМИНКИ ГЛАЗ. Не сидеть длительное время за компьютером. Наблюдение изменения диаметра зрачка и аккомодации. Дефекты зрения. Изменение с возрастом оптической силы глаза. Полезные рекомендации. Всего в школе 14,8% учащихся с дефектами зрения.

«Палеозойская эра по биологии» - Кембрийский период. Каменноугольный период. Девонский период. Пермский период. Ордовикский период. Начало 542 млн., конец 248 млн. лет назад. Силурийский период. Ароморфозы. Пантиков Андрей 9А. Палеозойская Эра. История.

Целлюлоза, или клетчатка, - самый распространённый полисахарид в растительном мире. Содержание целлюлозы в древесине 50-70%, в хлопке - 98%. Основным структурным звеном являются остатки -D - глюкопиранозы, соединённые 1,4-гликозидными связями. Макромолекулы не имеют разветвлений, в них содержится от 2500 до 12 000 глюкозных остатков.

Макромолекулы имеют линейное строение, что обусловлено конфигурацией аномерного атома углерода (в -форме); дополнительную устойчивость линейным молекулам придают водородные связи внутри цепи (между атомом кислорода пиранозного кольца и гидроксогруппой второго углеродного атома).

Макромолекулы расположены параллельно друг другу и связаны между собой межмолекулярными водородными связями, образуя волокна. В связи с этим целлюлоза обладает высокой механической прочностью и служит материалом для построения клеточных стенок растений.

Целлюлоза в воде не растворяется и набухает только в растворах щелочей. Она не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым балластным веществом. В желудке жвачных животных (коров, овец) содержатся микроорганизмы, расщепляющие целлюлозу, поэтому жвачные животные могут питаться продуктами, содержащими целлюлозу.

Целлюлоза широко применяется в производстве этанола, искусственного волокна, фотоплёнок, взрывчатых веществ.

При гидролизе целлюлозы с помощью водного раствора серной кислоты получают водный раствор глюкозы, который после удаления сульфат-ионов используют для получения этилового спирта путём спиртового брожения (гл. 7.1.3).

Искусственные волокна на основе целлюлозы - это прежде всего вискозные волокна. Их формуют из концентрированного раствора натриевой соли ксантогената целлюлозы. Схему реакции образования ксантогената целлюлозы условно можно представить следующим образом:

x = 0.450.65

Целлофан - это плёнка, формуемая из щелочных растворов ксантогената целлюлозы. Он нетоксичен, применяется в качестве упаковочного материала для жирных мясомолочных продуктов, фруктов, кондитерских изделий и др. В медицине целлофан - имплантируемый материал.

Этролы - это эфироцеллюлозные пластмассы. Важнейшим среди них является целлулоид, основой которого является нитрат целлюлозы (коллоксилин ) с низкой степенью этерификации (х = 1.5  2.5) [C 6 H 7 O 2 (OH ) 3- x (ONO 2 ) x ] n . Среди других этролов - это пластмассы на основе ацетата, ацетобутирата, ацетопропионата целлюлозы и этилцеллюлозы. Этролы применяют в производстве труб для перекачки природного газа, деталей автомобилей, самолётов, телефонных аппаратов, радио- и телеприёмников, медицинских инструментов и др.

Пироксилины - нитраты целлюлозы с высокой степенью этерификации (х = 2  3). Пироксилины и колоксилин применяются также в производстве бездымного пороха динамита и других взрывчатых веществ.

7.3.2. Амилоза и амилопектин

Амилоза и амилопектин - полисахариды, встречающиеся в составе клубней, корней и семян растений в виде смеси, имеющей название крахмал .

Амилоза представляет собой неразветвлённую макромолекулу, структурным звеном которой являются остатки ,D - глюкопиранозы, соединённые 1,4-гликозидными связями. В составе макромолекул содержится от 200 до 1000 глюкозных остатков. В пространстве макромолекулы свёрнуты в спираль:

На каждый виток спирали приходится 6 моносахаридных звеньев. Спираль имеет приблизительно 50 витков.

Очень характерным свойством крахмала является цветная реакция с йодом - появление интенсивной синей окраски. Предполагается, что появление окраски обусловлено специфическим донорно-акцепторным взаимодействием между гидроксильными группами и молекулами йода за счёт включения йода во внутренний канал спирали макромолекулы амилозы.

Макромолекула амилопектина построена также из остатков ,D - глюкопиранозы, но она разветвлена. В точках ветвления глюкозный остаток образует не только 1,4-, но и 1,6-гликозидные связи:

Между точками ветвления располагается от 20 до 25 глюкозных остатков. Общее количество моносахаридных звеньев в макромолекуле амилопектина достигает 6000 и более.

Крахмал обычно содержит до 10-20% связанной воды. При быстром нагревании крахмала происходит гидролитическое расщепление макромолекул с образованием более коротких молекулярных цепей. Продукт такого гидролитического расщепления крахмала называют декстринами . В отличие от целлюлозы, крахмал в воде набухает и образует вязкие растворы (гели), которые здесь называются клейстером .

Гидролиз крахмала в пищеварительном тракте человека происходит под действием ферментов, расщепляющих 1,4- и 1,6-гликозидные связи.

Крахмал широко применяется в различных отраслях промышленности. Из него в ферментативных процессах получают этанол, бутанол-1, молочную, лимонную кислоты.

Крахмал (C 6 H 10 O 5) n — аморфный порошок белого цвета, без вкуса и запаха, плохо растворим в воде, в горячей воде образует коллоидный раствор (клейстер). Макромолекулы крахмала построены из большого числа остатков α-глюкозы. Крахмал состоит из двух фракций: амилозы и амилопектина. Амилоза имеет линейные молекулы, амилопектин – разветвлённые.

Биологическая роль.

Крахмал – один из продуктов фотосинтеза, главное питательное запасное вещество растений.

Крахмал – основной углевод в пище человека.

Получение.

Крахмал получают чаще всего из картофеля.

Для этого картофель измельчают, промывают водой и перекачивают в большие сосуды, где происходит отстаивание. Полученный крахмал ещё раз промывают водой, отстаивают и сушат в струе теплого воздуха.

Химические свойства.

1. С иодом крахмал даёт фиолетовое окрашивание.

Крахмал – многоатомный спирт.

3. Крахмал сравнительно легко подвергается гидролизу в кислой среде и под действием ферментов:

(C6H10O5)n + nH2O → nC6H12O6

крахмал глюкоза

В зависимости от условий гидролиз крахмала может протекать ступенчато, с образованием различных промежуточных продуктов:

(С6H10O5)n → (C6H1005)x → (C6H1005)y→ C12H22O11 → nC6H12O6

крахмал растворимый декстрины мальтоза глюкоза крахмал

Происходит постепенное расщепление макромолекул.

Применение крахмала.

Крахмал применяется в кондитерском производстве (получение глюкозы и патоки), является сырьём для производства этилового, н -бутилового спиртов, ацетона, лимонной кислоты, глицерина и так далее.

Он используется в медицине в качестве наполнителей (в мазях и присыпках), как клеящее вещество.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, то есть картофель варят, хлеб пекут.

Крахмал. Химические свойства, применение

В этих условиях происходит частичный гидролиз крахмала и образуются декстрины , растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, – (C6H10O5)n, но его молекулы более разветвлённые.

Крахмал как питательное вещество.

Крахмал является основным углеводом нашей пищи, но он не может самостоятельно усваиваться организмом.

2. Подобно жирам, крахмал сначала подвергается гидролизу.

3. Этот процесс начинается уже при пережевывании пищи во рту под действием фермента, содержащегося в слюне.

5. Образующаяся глюкоза всасывается через стенки кишечника в кровь и поступает в печень, а оттуда – во все ткани организма.

Избыток глюкозы отлагается в печени в виде высокомолекулярного углевода – гликогена.

Особенности гликогена: а) по строению гликоген отличается от крахмала большей разветвленностью своих молекул; б) этот запасный гликоген между приемами пищи снова превращается в глюкозу по мере расходования ее в клетках организма.

Промежуточные продукты гидролиза крахмала (декстрины) легче усваиваются организмом, чем сам крахмал, так как состоят из меньших по размерам молекул и лучше растворяются в воде.

8. Приготовление пищи часто связано именно с превращением крахмала в декстрины.

Применение крахмала и получение его из крахмалсодержащих продуктов.

Крахмал используется не только как продукт питания.

2. В пищевой промышленности из него готовят глюкозу и патоку.

3. Для получения глюкозы крахмал нагревают с разбавленной серной кислотой в течение нескольких часов.

4. Когда процесс гидролиза закончится, кислоту нейтрализуют мелом, образующийся осадок сульфата кальция отфильтровывается и раствор упаривается.

Если процесс гидролиза не доводить до конца, то в результате получается густая сладкая масса – смесь декстринов и глюкозы – патока.

Особенности патоки: а) она применяется в кондитерском деле для приготовления некоторых сортов конфет, мармелада, пряников и т.

п.; б) с патокой кондитерские изделия не кажутся приторно-сладкими, как приготовленные на чистом сахаре, и долго остаются мягкими.

6. Декстрины, получаемые из крахмала, используются в качестве клея. Крахмал применяется для крахмаления белья: под действием нагревания горячим утюгом он превращается в декстрины, которые склеивают волокна ткани и образуют плотную пленку, предохраняющую ткань от быстрого загрязнения.

Крахмал получается чаще всего из картофеля. Картофель моется, затем измельчается на механических терках, измельченная масса промывается на ситах водой.

8. Освободившиеся из клеток клубня мелкие зерна крахмала проходят с водой через сито и оседают на дне чана. Крахмал тщательно промывается, отделяется от воды и сушится.

Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, целлюлоза — строение, свойства, гидролиз, биороль.

Крахмал. Этот полисахарид состоит из полимеров двух типов, построенных из D-глюкопиранозы: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях в процессе фотосинтеза и «запасается» в клубнях, корнях, семенах.

Крахмал — белое аморфное вещество.

В холодной воде нерастворим, в горячей набухает и некоторая часть его постепенно растворяется. При быстром нагревании крахмала из-за содержащейся в нем влаги (10-20%) происходит гидролитическое расщепление макромолекулярной цепи на более мелкие осколки и образуется смесь полисахаридов, называемых декстринами. Декстрины лучше растворяются в воде, чем крахмал.

Такой процесс расщепления крахмала, или декстринизация, осуществляется при хлебопечении.

Крахмал муки, превращенный в декстрины, легче усваивается вследствие большей растворимости.

Амилоза — полисахарид, в котором остатки D-глюкопиранозы связаны α(1,4)-гликозидными связями, т.

Крахмал: формула, химические свойства, применение

дисахаридным фрагментом амилозы является мальтоза.

Цепь амилозы неразветвленная, включает до тысячи глюкозных остатков, молекулярная масса до 160 тыс.

По данным рентгеноструктурного анализа, макромолекула амилозы свернута в спираль. На каждый виток спирали приходится шесть моносахаридных звеньев. Во внутренний канал спирали могут входить соответствующие по размеру молекулы, например молекулы йода, образуя комплексы, называемые соединениями включения.

Комплекс амилозы с йодом имеет синий цвет. Это используется в аналитических целях для открытия как крахмала, так и йода (йодкрахмальная проба).

Рис. 1. Спиралевидная структура амилозы (вид вдоль оси спирали)

Амилопектин в отличие от амилозы имеет разветвленное строение (рис.

2). Его молекулярная масса достигает 1-6 млн.

Рис. 2. Разветвленная макромолекула амилопектина (цветные кружки — места ответвления боковых цепей)

Амилопектин — разветвленный полисахарид, в цепях которого остатки D-глюкопиранозы связаны α(1,4)-гликозидными связями, а в точках разветвления — α(1,6)-связями.

Между точками разветвления располагаются 20-25 глюкозных остатков.

Гидролиз крахмала в желудочно-кишечном тракте происходит под действием ферментов, расщепляющих α(1,4)- и α(1,6)-гликозидные связи. Конечными продуктами гидролиза являются глюкоза и мальтоза.

Гликоген. В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала.

По строению он подобен амилопектину, но имеет еще большее разветвление цепей. Обычно между точками разветвления содержатся 10-12, иногда даже 6 глюкозных звеньев. Условно можно сказать, что разветвленность макромолекулы гликогена вдвое больше, чем амилопектина.

Сильное разветвление способствует выполнению гликогеном энергетической функции, так как только при множестве концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы.

Молекулярная масса гликогена необычайно велика и достигает 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода.

Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остается внутри клетки, пока не возникнет потребность в энергии.

Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы.

Это используют в анализе тканей на содержание гликогена по количеству образовавшейся глюкозы.

Аналогично гликогену в животных организмах такую же роль резервного полисахарида в растениях выполняет амилопектин, имеющий менее разветвленное строение. Это связано с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрого притока энергии, как иногда необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза. Этот полисахарид, называемый также клетчаткой, является наиболее распространенным растительным полисахаридом.

Целлюлоза обладает большой механической прочностью и выполняет функцию опорного материала растений. Древесина содержит 50-70% целлюлозы; хлопок представляет собой почти чистую целлюлозу. Целлюлоза является важным сырьем для ряда отраслей промышленности (целлюлозно-бумажной, текстильной и т. п.).

Целлюлоза — линейный полисахарид, в котором остатки D-глюкопиранозы связаны β(1,4)-гликозидными связями.

Дисахаридный фрагмент целлюлозы представляет собой целлобиозу.

Макромолекулярная цепь не имеет разветвлений, в ней содержится 2,5-12 тыс. глюкозных остатков, что соответствует молекулярной массе от 400 тыс. до 1-2 млн.

β-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюллозы имеет строго линейное строение.

Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.

Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений.

Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но необходима для нормального питания как балластное вещество.

Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шелк), нитраты (взрывчатые вещества, коллоксилин) и другие (вискозное волокно, целлофан).

Предыдущая1234567891011121314Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Б). Крахмала функции

Крахмал - растительный полисахарид со сложным строением. Он состоит из амилозы и амилопектина; их соотношение различно в раз-личных крахмалах (амилозы 13-30%; амилопектина 70-85%).

Амилоза и амилопектин в расте-ниях формируются в виде крахмальных зерен.

Свойства крахмала, молекула крахмала

Загуститель. 2. Связывающий агент в продуктах. Присутствует в сырье или добавляют.

Клейстеризация и другие свойства . Неповрежденные крахмальные зерна нера-створимы в холодной воде, но могут обратимо впитывать влагу и легко набухают. Увеличение диаметра зерен при набухании зависит от вида крахмала. Например, для обычного кукурузного крахмала - 9,1%, для восковидного - 22,7%.

По мере повышения температуры увеличивается колебание крахмаль-ных молекул, разрушаются межмолекулярные связи, что приводит к ос-вобождению мест связывания для взаимодействия с молекулами воды через водородные связи.

Это проникновение воды и увеличивающееся разделение больших и длинных сегментов крахмальных цепей увеличи-вает неупорядоченность в общей структуре и уменьшает число и размер кристаллических областей. При дальнейшем нагреве в присутствии боль-шого количества воды происходит полная потеря кристалличности, со-провождающаяся потерей очертания крахмальных зерен. Температуру, соответствующую разрушению внут-ренней структуры крахмальных зерен, называют температурой клейстеризации. Она зависит от источника получения крахмала.

Во время клейстеризации зерна крахмала набухают очень сильно, сначала увеличение температуры ведет к крутому подъему вяз-кости, что связано с набуханием крахмальных зерен.

Затем набухшие крахмальные зерна разрываются и дезинтегрируют, вызывая падение вяз-кости.

Факторы, влияющие напроцесс клейстеризации крахмала:

1. Температура.

2. Активность воды (чем выше, тем быстрее процесс, на активность воды влияют связывающие воду компоненты).

3. Высокие содержания сахара уменьшают скорость клейстеризации крахмала, снижают пик вязкости.

Дисахариды являются более эффек-тивными с точки зрения замедления клейстеризации и снижения пика вязкости, чем моносахариды. Кроме того, сахара уменьшают силу крахмальных гелей, играя роль пластификатора и вмешиваясь в об-разование зон связывания.

На клейстеризацию крахмала при производстве пищевых продуктов оказывают влияние липиды - триглицериды (жиры, масла), моно- и диацилглицериды. Жиры, которые могут давать комплексы с амилозой, тормозят набухание крахмальных зерен. Вследствие этого в белом хлебе, в котором мало жира, 96% крахмала обычно полностью клейстеризовано.

При производстве пекарских изделий эти два фактора (большие кон-центрации жира и низкая aw) вносят большой вклад в неклеистеризацию крахмала.

Моноацилглицериды жирных кислот (С|6-С18) приводят к увеличе-нию температуры клейстеризации, увеличению температуры, соответ-ствующей пику вязкости, уменьшению силы геля.

Это связано с тем, что компоненты жирных кислот в моноацилглицеридах могут образовывать соединения включения с амилозой, а, возможно, и с длинными внешни-ми цепями амилопектина. Липид-амилозные комплексы вмешиваются также и в обра-зование зон связывания.

5. Низкие концентрация солей , как правило, не оказывают влияния на клейстеризацию или образование геля.

Исключение составляет картофельный амилопектин, ко-торый содержит фосфатные группы. В этом случае соли могут, в зависи-мости от условий, либо увеличивать, либо уменьшать набухание.

6. Кислоты присутствуют во многих продуктах , где используется крахмал в качестве загустителя. Однако большинство пищевых продуктов имеет рН в области 4-7, и эти концентрации ионов Н+ не оказывают большого вли-яния на набухание крахмала или его клейстеризацию.

При низких рН (салатные приправы, фруктовые на-чинки) имеет место заметное снижение пика вязкости крахмальных клейстеров и быстрое снижение вязкости при нагревании. При низких рН имеет место интенсивный гидролиз с об-разованием незагустевающих декстринов, необходимо, чтобы избежать кислотного разжижения, использовать в качестве загустителя в кислых продуктах модифицированные поперечно-сшитые крахмалы.

Присутствие белков. Это в пер-вую очередь важно с точки зрения формирования структуры хлеба, кото-рая связана с образованием клейковины (при перемешивании в процес-се тестоприготовления), клейстеризацией крахмала и денатурацией бел-ка, благодаря нагреванию в присутствии воды. Однако точная природа взаимодействия между крахмалом и белком в пищевых системах остает-ся неясной.

8. При производстве замороженных пищевых продуктов, в которых крахмал выполняет роль загустителя, необходимо считаться с возмож-ностью ретроградации амилозы в процессе оттаивания. Если в этом слу-чае используется обычный крахмал, то при оттаивании изделия приоб-ретают волокнистую или зерноподобную структуру.

Предпочтительнее для таких изделий использовать восковидный кукурузный крахмал, ко-торый практически не содержит амилозы, или фосфатные поперечно-сшитые крахмалы.

9. У многих крахмалсодержащих пищевых продуктов (в первую очередь, хлебобулочных) при хранении наблюдается черствение, связанное с ассоциацией амилозных молекул. Для предотвращения черствения в таких изделиях целесообразно использовать в качестве добавок жиры, которые образуют комплексы с амилозой, прогрев, смачивание водой.

Поиск на сайте:

Полисахариды.

Полисахариды — это природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов.

Основные представители — крахмал и целлюлоза — построены из остатков одного моносахарида — глюкозы.

Крахмал и целлюлоза имеют одинаковую молекулярную формулу: (C6H10O5)n , но совершенно различные свойства. Это объясняется особенностями их пространственного строения.

Крахмал состоит из остатков α-глюкозы, а целлюлоза – из β-глюкозы, которые являются пространственными изомерами и отличаются лишь положением одной гидроксильной группы (выделена цветом):

Крахмалом называется смесь двух полисахаридов, построенных из остатков циклической α-глюкозы.

В его состав входят:

  • амилоза (внутренняя часть крахмального зерна) – 10-20%
  • амилопектин (оболочка крахмального зерна) – 80-90%

Цепь амилозы включает 200 — 1000 остатков α-глюкозы (средняя мол.масса 160 000) и имеет неразветвленное строение.

Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев α-глюкозы.

Свойства крахмала:

Гидролиз крахмала: при кипячении в кислой среде крахмал последовательно гидролизуется.

2. Крахмал не дает реакцию “серебряного зеркала” и не восстанавливает гидроксид меди (II).

Качественная реакция на крахмал: синее окрашивание с раствором йода.