Calculation of the derivative of elementary functions. Solving derivatives for dummies: definition, how to find, examples of solutions. Derivatives of hyperbolic functions

We present a summary table for convenience and clarity when studying the topic.

Constanty = C

Power function y = x p

(x p) " = p x p - 1

Exponential functiony = a x

(a x) " = a x ln a

In particular, whena = ewe have y = e x

(e x) " = e x

Logarithmic function

(log a x) " = 1 x ln a

In particular, whena = ewe have y = log x

(ln x) " = 1 x

Trigonometric functions

(sin x) " = cos x (cos x) " = - sin x (t g x) " = 1 cos 2 x (c t g x) " = - 1 sin 2 x

Inverse trigonometric functions

(a r c sin x) " = 1 1 - x 2 (a r c cos x) " = - 1 1 - x 2 (a r c t g x) " = 1 1 + x 2 (a r c c t g x) " = - 1 1 + x 2

Hyperbolic functions

(s h x) " = c h x (c h x) " = s h x (t h x) " = 1 c h 2 x (c t h x) " = - 1 s h 2 x

Let us analyze how the formulas of the specified table were obtained or, in other words, we will prove the derivation of derivative formulas for each type of function.

Derivative of a constant

Evidence 1

In order to derive this formula, we take as a basis the definition of the derivative of a function at a point. We use x 0 = x, where x takes the value of any real number, or, in other words, x is any number from the domain of the function f (x) = C. Let's write down the limit of the ratio of the increment of a function to the increment of the argument as ∆ x → 0:

lim ∆ x → 0 ∆ f (x) ∆ x = lim ∆ x → 0 C - C ∆ x = lim ∆ x → 0 0 ∆ x = 0

Please note that the expression 0 ∆ x falls under the limit sign. It is not the uncertainty “zero divided by zero,” since the numerator does not contain an infinitesimal value, but precisely zero. In other words, the increment of a constant function is always zero.

So, the derivative of the constant function f (x) = C is equal to zero throughout the entire domain of definition.

Example 1

The constant functions are given:

f 1 (x) = 3, f 2 (x) = a, a ∈ R, f 3 (x) = 4. 13 7 22 , f 4 (x) = 0 , f 5 (x) = - 8 7

Solution

Let us describe the given conditions. In the first function we see the derivative of the natural number 3. In the following example, you need to take the derivative of A, Where A- any real number. The third example gives us the derivative irrational number 4 . 13 7 22, the fourth is the derivative of zero (zero is an integer). Finally, in the fifth case we have the derivative rational fraction - 8 7 .

Answer: derivatives specified functions is zero for any real x(over the entire definition area)

f 1 " (x) = (3) " = 0 , f 2 " (x) = (a) " = 0 , a ∈ R , f 3 " (x) = 4 . 13 7 22 " = 0 , f 4 " (x) = 0 " = 0 , f 5 " (x) = - 8 7 " = 0

Derivative of a power function

Let's move on to the power function and the formula for its derivative, which has the form: (x p) " = p x p - 1, where the exponent p is any real number.

Evidence 2

Let us give a proof of the formula when the exponent is natural number: p = 1, 2, 3, …

We again rely on the definition of a derivative. Let's write down the limit of the ratio of the increment of a power function to the increment of the argument:

(x p) " = lim ∆ x → 0 = ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x

To simplify the expression in the numerator, we use Newton’s binomial formula:

(x + ∆ x) p - x p = C p 0 + x p + C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p - x p = = C p 1 x p - 1 ∆ x + C p 2 x p - 2 (∆ x) 2 + . . . + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p

Thus:

(x p) " = lim ∆ x → 0 ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x = = lim ∆ x → 0 (C p 1 x p - 1 ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p) ∆ x = = lim ∆ x → 0 (C p 1 x p - 1 + C p 2 x p - 2 ∆ x + . . + C p p - 1 x (∆ x) p - 2 + C p p (∆ x) p - 1) = = C p 1 · x p - 1 + 0 + .

Thus, we have proven the formula for the derivative of a power function when the exponent is a natural number.

Evidence 3

To provide proof for the case when p- any real number other than zero, we use the logarithmic derivative (here we should understand the difference from the derivative logarithmic function). To have a more complete understanding, it is advisable to study the derivative of a logarithmic function and further understand the derivative of an implicit function and the derivative of a complex function.

Let's consider two cases: when x positive and when x negative.

So x > 0. Then: x p > 0 . Let us logarithm the equality y = x p to base e and apply the property of the logarithm:

y = x p ln y = ln x p ln y = p · ln x

At this stage, we have obtained an implicitly specified function. Let's define its derivative:

(ln y) " = (p · ln x) 1 y · y " = p · 1 x ⇒ y " = p · y x = p · x p x = p · x p - 1

Now we consider the case when x – a negative number.

If the indicator p is an even number, then the power function is defined for x< 0 , причем является четной: y (x) = - y ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1

Then x p< 0 и возможно составить доказательство, используя логарифмическую производную.

If p is an odd number, then the power function is defined for x< 0 , причем является нечетной: y (x) = - y (- x) = - (- x) p . Тогда x p < 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y " (x) = (- (- x) p) " = - ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p x p - 1

The last transition is possible due to the fact that if p is an odd number, then p - 1 either an even number or zero (for p = 1), therefore, for negative x the equality (- x) p - 1 = x p - 1 is true.

So, we have proven the formula for the derivative of a power function for any real p.

Example 2

Functions given:

f 1 (x) = 1 x 2 3 , f 2 (x) = x 2 - 1 4 , f 3 (x) = 1 x log 7 12

Determine their derivatives.

Solution

We transform some of the given functions into tabular form y = x p , based on the properties of the degree, and then use the formula:

f 1 (x) = 1 x 2 3 = x - 2 3 ⇒ f 1 " (x) = - 2 3 x - 2 3 - 1 = - 2 3 x - 5 3 f 2 " (x) = x 2 - 1 4 = 2 - 1 4 x 2 - 1 4 - 1 = 2 - 1 4 x 2 - 5 4 f 3 (x) = 1 x log 7 12 = x - log 7 12 ⇒ f 3" ( x) = - log 7 12 x - log 7 12 - 1 = - log 7 12 x - log 7 12 - log 7 7 = - log 7 12 x - log 7 84

Derivative of an exponential function

Proof 4

Let us derive the derivative formula using the definition as a basis:

(a x) " = lim ∆ x → 0 a x + ∆ x - a x ∆ x = lim ∆ x → 0 a x (a ∆ x - 1) ∆ x = a x lim ∆ x → 0 a ∆ x - 1 ∆ x = 0 0

We got uncertainty. To expand it, let's write a new variable z = a ∆ x - 1 (z → 0 as ∆ x → 0). In this case, a ∆ x = z + 1 ⇒ ∆ x = log a (z + 1) = ln (z + 1) ln a . For the last transition, the formula for transition to a new logarithm base was used.

Let us substitute into the original limit:

(a x) " = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln (z + 1) = = a x · ln a · lim ∆ x → 0 1 ln (z + 1) 1 z = a x · ln a · 1 ln lim ∆ x → 0 (z + 1) 1 z

Let us remember the second remarkable limit and then we obtain the formula for the derivative exponential function:

(a x) " = a x · ln a · 1 ln lim z → 0 (z + 1) 1 z = a x · ln a · 1 ln e = a x · ln a

Example 3

The exponential functions are given:

f 1 (x) = 2 3 x , f 2 (x) = 5 3 x , f 3 (x) = 1 (e) x

It is necessary to find their derivatives.

Solution

We use the formula for the derivative of the exponential function and the properties of the logarithm:

f 1 " (x) = 2 3 x " = 2 3 x ln 2 3 = 2 3 x (ln 2 - ln 3) f 2 " (x) = 5 3 x " = 5 3 x ln 5 1 3 = 1 3 5 3 x ln 5 f 3 " (x) = 1 (e) x " = 1 e x " = 1 e x ln 1 e = 1 e x ln e - 1 = - 1 e x

Derivative of a logarithmic function

Evidence 5

Let us provide a proof of the formula for the derivative of a logarithmic function for any x in the domain of definition and any permissible values ​​of the base a of the logarithm. Based on the definition of derivative, we get:

(log a x) " = lim ∆ x → 0 log a (x + ∆ x) - log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a

From the indicated chain of equalities it is clear that the transformations were based on the property of the logarithm. The equality lim ∆ x → 0 1 + ∆ x x x ∆ x = e is true in accordance with the second remarkable limit.

Example 4

Logarithmic functions are given:

f 1 (x) = log ln 3 x , f 2 (x) = ln x

It is necessary to calculate their derivatives.

Solution

Let's apply the derived formula:

f 1 " (x) = (log ln 3 x) " = 1 x · ln (ln 3) ; f 2 " (x) = (ln x) " = 1 x ln e = 1 x

So the derivative natural logarithm is one divided by x.

Derivatives of trigonometric functions

Proof 6

Let's use some trigonometric formulas and the first wonderful limit to derive the formula for the derivative of a trigonometric function.

According to the definition of the derivative of the sine function, we get:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x

The formula for the difference of sines will allow us to perform the following actions:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x = = lim ∆ x → 0 2 sin x + ∆ x - x 2 cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2

Finally, we use the first wonderful limit:

sin " x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x

So, the derivative of the function sin x will cos x.

We will also prove the formula for the derivative of the cosine:

cos " x = lim ∆ x → 0 cos (x + ∆ x) - cos x ∆ x = = lim ∆ x → 0 - 2 sin x + ∆ x - x 2 sin x + ∆ x + x 2 ∆ x = = - lim ∆ x → 0 sin ∆ x 2 sin x + ∆ x 2 ∆ x 2 = = - sin x + 0 2 lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = - sin x

Those. the derivative of the cos x function will be – sin x.

We derive the formulas for the derivatives of tangent and cotangent based on the rules of differentiation:

t g " x = sin x cos x " = sin " x · cos x - sin x · cos " x cos 2 x = = cos x · cos x - sin x · (- sin x) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g " x = cos x sin x " = cos " x · sin x - cos x · sin " x sin 2 x = = - sin x · sin x - cos x · cos x sin 2 x = - sin 2 x + cos 2 x sin 2 x = - 1 sin 2 x

Derivatives of inverse trigonometric functions

Derivative Section inverse functions provides comprehensive information on the proof of the formulas for the derivatives of arcsine, arccosine, arctangent and arccotangent, so we will not duplicate the material here.

Derivatives of hyperbolic functions

Evidence 7

We can derive the formulas for the derivatives of the hyperbolic sine, cosine, tangent and cotangent using the differentiation rule and the formula for the derivative of the exponential function:

s h " x = e x - e - x 2 " = 1 2 e x " - e - x " = = 1 2 e x - - e - x = e x + e - x 2 = c h x c h " x = e x + e - x 2 " = 1 2 e x " + e - x " = = 1 2 e x + - e - x = e x - e - x 2 = s h x t h " x = s h x c h x " = s h " x · c h x - s h x · c h " x c h 2 x = c h 2 x - s h 2 x c h 2 x = 1 c h 2 x c t h " x = c h x s h x " = c h " x · s h x - c h x · s h " x s h 2 x = s h 2 x - c h 2 x s h 2 x = - 1 s h 2 x

If you notice an error in the text, please highlight it and press Ctrl+Enter

If you follow the definition, then the derivative of a function at a point is the limit of the ratio of the increment of the function Δ y to the argument increment Δ x:

Everything seems to be clear. But try using this formula to calculate, say, the derivative of the function f(x) = x 2 + (2x+ 3) · e x sin x. If you do everything by definition, then after a couple of pages of calculations you will simply fall asleep. Therefore, there are simpler and more effective ways.

To begin with, we note that from the entire variety of functions we can distinguish the so-called elementary functions. These are relatively simple expressions, the derivatives of which have long been calculated and entered into the table. Such functions are quite easy to remember - along with their derivatives.

Derivatives of elementary functions

Elementary functions are all those listed below. The derivatives of these functions must be known by heart. Moreover, it is not at all difficult to memorize them - that’s why they are elementary.

So, derivatives of elementary functions:

Name Function Derivative
Constant f(x) = C, CR 0 (yes, zero!)
Power with rational exponent f(x) = x n n · x n − 1
Sinus f(x) = sin x cos x
Cosine f(x) = cos x −sin x(minus sine)
Tangent f(x) = tg x 1/cos 2 x
Cotangent f(x) = ctg x − 1/sin 2 x
Natural logarithm f(x) = log x 1/x
Arbitrary logarithm f(x) = log a x 1/(x ln a)
Exponential function f(x) = e x e x(nothing changed)

If an elementary function is multiplied by an arbitrary constant, then the derivative of the new function is also easily calculated:

(C · f)’ = C · f ’.

In general, constants can be taken out of the sign of the derivative. For example:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Obviously, elementary functions can be added to each other, multiplied, divided - and much more. This is how new functions will appear, no longer particularly elementary, but also differentiated according to certain rules. These rules are discussed below.

Derivative of sum and difference

Let the functions be given f(x) And g(x), the derivatives of which are known to us. For example, you can take the elementary functions discussed above. Then you can find the derivative of the sum and difference of these functions:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

So, the derivative of the sum (difference) of two functions is equal to the sum (difference) of the derivatives. There may be more terms. For example, ( f + g + h)’ = f ’ + g ’ + h ’.

Strictly speaking, there is no concept of “subtraction” in algebra. There is a concept of “negative element”. Therefore the difference fg can be rewritten as a sum f+ (−1) g, and then only one formula remains - the derivative of the sum.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Function f(x) is the sum of two elementary functions, therefore:

f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x+ cos x;

We reason similarly for the function g(x). Only there are already three terms (from the point of view of algebra):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Answer:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivative of the product

Mathematics is a logical science, so many people believe that if the derivative of a sum is equal to the sum of derivatives, then the derivative of the product strike">equal to the product of derivatives. But screw you! The derivative of a product is calculated using a completely different formula. Namely:

(f · g) ’ = f ’ · g + f · g

The formula is simple, but it is often forgotten. And not only schoolchildren, but also students. The result is incorrectly solved problems.

Task. Find derivatives of functions: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Function f(x) is the product of two elementary functions, so everything is simple:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (− sin x) = x 2 (3cos xx sin x)

Function g(x) the first factor is a little more complicated, but general scheme this doesn't change. Obviously, the first factor of the function g(x) is a polynomial and its derivative is the derivative of the sum. We have:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) · ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Answer:
f ’(x) = x 2 (3cos xx sin x);
g ’(x) = x(x+ 9) · e x .

Please note that in the last step the derivative is factorized. Formally, this does not need to be done, but most derivatives are not calculated on their own, but to examine the function. This means that further the derivative will be equated to zero, its signs will be determined, and so on. For such a case, it is better to have an expression factorized.

If there are two functions f(x) And g(x), and g(x) ≠ 0 on the set we are interested in, we can define new feature h(x) = f(x)/g(x). For such a function you can also find the derivative:

Not weak, right? Where did the minus come from? Why g 2? And like this! This is one of the most complex formulas - you can’t figure it out without a bottle. Therefore, it is better to study it with specific examples.

Task. Find derivatives of functions:

The numerator and denominator of each fraction contain elementary functions, so all we need is the formula for the derivative of the quotient:


According to tradition, let's factorize the numerator - this will greatly simplify the answer:

A complex function is not necessarily a half-kilometer-long formula. For example, it is enough to take the function f(x) = sin x and replace the variable x, say, on x 2 + ln x. It will work out f(x) = sin ( x 2 + ln x) - That's what it is complex function. It also has a derivative, but it will not be possible to find it using the rules discussed above.

What should I do? In such cases, replacing a variable and formula for the derivative of a complex function helps:

f ’(x) = f ’(t) · t', If x is replaced by t(x).

As a rule, the situation with understanding this formula is even more sad than with the derivative of the quotient. Therefore, it is also better to explain it with specific examples, with detailed description every step.

Task. Find derivatives of functions: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Note that if in the function f(x) instead of expression 2 x+ 3 will be easy x, then it will work out elementary function f(x) = e x. Therefore, we make a replacement: let 2 x + 3 = t, f(x) = f(t) = e t. We look for the derivative of a complex function using the formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

And now - attention! We perform the reverse replacement: t = 2x+ 3. We get:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Now let's look at the function g(x). Obviously it needs to be replaced x 2 + ln x = t. We have:

g ’(x) = g ’(t) · t’ = (sin t)’ · t’ = cos t · t

Reverse replacement: t = x 2 + ln x. Then:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

That's all! As can be seen from the last expression, the whole problem has been reduced to calculating the derivative sum.

Answer:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Very often in my lessons, instead of the term “derivative,” I use the word “prime.” For example, a prime from the amount equal to the sum strokes. Is that clearer? Well, that's good.

Thus, calculating the derivative comes down to getting rid of these same strokes according to the rules discussed above. As a final example, let's return to the derivative power with a rational exponent:

(x n)’ = n · x n − 1

Few people know that in the role n may well be a fractional number. For example, the root is x 0.5. What if there is something fancy under the root? Again, the result will be a complex function - they like to give such constructions to tests and exams.

Task. Find the derivative of the function:

First, let's rewrite the root as a power with a rational exponent:

f(x) = (x 2 + 8x − 7) 0,5 .

Now we make a replacement: let x 2 + 8x − 7 = t. We find the derivative using the formula:

f ’(x) = f ’(t) · t ’ = (t 0.5)’ · t’ = 0.5 · t−0.5 · t ’.

Let's do the reverse replacement: t = x 2 + 8x− 7. We have:

f ’(x) = 0.5 · ( x 2 + 8x− 7) −0.5 · ( x 2 + 8x− 7)’ = 0.5 · (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Finally, back to the roots:

We present without proof the formulas for the derivatives of the basic elementary functions:

1. Power function: (x n)` =nx n -1 .

2. Exponential function: (a x)` =a x lna(in particular, (e x)` = e x).

3. Logarithmic function: (in particular, (lnx)` = 1/x).

4. Trigonometric functions:

(cosх)` = -sinx

(tgх)` = 1/cos 2 x

(ctgх)` = -1/sin 2 x

5. Inverse trigonometric functions:

It can be proven that to differentiate a power-exponential function, it is necessary to use the formula for the derivative of a complex function twice, namely, differentiate it as a complex power function, and as a complex exponential, and add the results: (f(x)  (x))` =(x)*f(x)  (x)-1 *f(x)` +f(x)  ( x) *lnf(x)*(x)`.

Higher order derivatives

Since the derivative of a function is itself a function, it can also have a derivative. The concept of a derivative, which was discussed above, refers to a first-order derivative.

Derivativen-th order is called the derivative of the (n- 1)th order derivative. For example, f``(x) = (f`(x))` - second order derivative (or second derivative), f```(x) = (f``(x))` - third order derivative (or third derivative), etc. Sometimes Roman Arabic numerals in parentheses are used to denote higher-order derivatives, for example, f (5) (x) or f (V) (x) for a fifth-order derivative.

The physical meaning of derivatives of higher orders is determined in the same way as for the first derivative: each of them represents the rate of change of the derivative of the previous order. For example, the second derivative represents the rate of change of the first, i.e. speed speed. For rectilinear motion, it means the acceleration of a point at a moment in time.

Elasticity function

Elasticity function E x (y) is the limit of the ratio of the relative increment of the function y to the relative increment of the argument x as the latter tends to zero:
.

The elasticity of a function shows approximately how many percent the function y = f(x) will change when the independent variable x changes by 1%.

In an economic sense, the difference between this indicator and the derivative is that the derivative has units of measurement, and therefore its value depends on the units in which the variables are measured. For example, if the dependence of production volume on time is expressed in tons and months, respectively, then the derivative will show the marginal increase in volume in tons per month; if we measure these indicators, say, in kilograms and days, then both the function itself and its derivative will be different. Elasticity is essentially a dimensionless quantity (measured in percentages or shares) and therefore does not depend on the scale of indicators.

Basic theorems on differentiable functions and their applications

Fermat's theorem. If a function differentiable on an interval reaches its greatest or minimum value at an internal point of this interval, then the derivative of the function at this point is zero.

No proof.

The geometric meaning of Fermat's theorem is that at the point of the largest or smallest value achieved inside the interval, the tangent to the graph of the function is parallel to the abscissa axis (Figure 3.3).

Rolle's theorem. Let the function y =f(x) satisfy the following conditions:

2) differentiable on the interval (a, b);

3) at the ends of the segment takes equal values, i.e. f(a) =f(b).

Then there is at least one point inside the segment at which the derivative of the function is equal to zero.

No proof.

The geometric meaning of Rolle's theorem is that there is at least one point at which the tangent to the graph of the function will be parallel to the abscissa axis (for example, in Figure 3.4 there are two such points).

If f(a) =f(b) = 0, then Rolle’s theorem can be formulated differently: between two consecutive zeros of the differentiable function there is at least one zero of the derivative.

Rolle's theorem is a special case of Lagrange's theorem.

Lagrange's theorem. Let the function y =f(x) satisfy the following conditions:

1) continuous on the interval [a, b];

2) differentiable on the interval (a, b).

Then inside the segment there is at least one such point c, at which the derivative is equal to the quotient of the function increment divided by the argument increment on this segment:
.

No proof.

To understand the physical meaning of Lagrange’s theorem, we note that
is nothing more than the average rate of change of the function over the entire interval [a, b]. Thus, the theorem states that inside the segment there is at least one point at which the “instantaneous” rate of change of the function is equal to the average rate of its change over the entire segment.

The geometric meaning of Lagrange's theorem is illustrated in Figure 3.5. Note that the expression
represents the angular coefficient of the straight line on which the chord AB lies. The theorem states that on the graph of a function there will be at least one point at which the tangent to it will be parallel to this chord (i.e., the slope of the tangent - the derivative - will be the same).

Corollary: if the derivative of a function is equal to zero on a certain interval, then the function is identically constant on this interval.

In fact, let us take the interval . According to Lagrange's theorem, in this interval there is a point c for which
. Hence f(a) – f(x) = f `(с)(a – x) = 0; f(x) = f(a) = const.

L'Hopital's rule. The limit of the ratio of two infinitesimal or infinitely large functions is equal to the limit of the ratio of their derivatives (finite or infinite), if the latter exists in the indicated sense.

In other words, if there is uncertainty of the form
, That
.

No proof.

The application of L'Hopital's rule to find limits will be discussed in practical classes.

Sufficient condition for an increase (decrease) of a function. If the derivative of a differentiable function is positive (negative) within a certain interval, then the function increases (decreases) on this interval.

Proof. Consider two values ​​x 1 and x 2 from this interval (let x 2 > x 1). By Lagrand's theorem on [x 1, x 2] there is a point c at which
. Hence f(x 2) –f(x 1) =f`(c)(x 2 –x 1). Then for f`(c) > 0 the left side of the inequality is positive, i.e. f(x 2) >f(x 1), and the function is increasing. Whenf`(c)< 0 левая часть неравенства отрицательна, т.е.f(х 2)

The theorem is proven.

Geometric interpretation of the condition for the monotonicity of a function: if the tangents to the curve in a certain interval are directed at acute angles to the abscissa axis, then the function increases, and if at obtuse angles, then it decreases (see Figure 3.6).

Note: the necessary condition for monotonicity is weaker. If a function increases (decreases) over a certain interval, then the derivative is non-negative (non-positive) on this interval (that is, at individual points the derivative of a monotonic function can be equal to zero).

Solving physical problems or examples in mathematics is completely impossible without knowledge of the derivative and methods for calculating it. The derivative is one of the most important concepts in mathematical analysis. We decided to devote today’s article to this fundamental topic. What is a derivative, what is its physical and geometric meaning, how to calculate the derivative of a function? All these questions can be combined into one: how to understand the derivative?

Geometric and physical meaning of derivative

Let there be a function f(x) , specified in a certain interval (a, b) . Points x and x0 belong to this interval. When x changes, the function itself changes. Changing the argument - the difference in its values x-x0 . This difference is written as delta x and is called argument increment. A change or increment of a function is the difference between the values ​​of a function at two points. Definition of derivative:

The derivative of a function at a point is the limit of the ratio of the increment of the function at a given point to the increment of the argument when the latter tends to zero.

Otherwise it can be written like this:

What's the point of finding such a limit? And here's what it is:

the derivative of a function at a point is equal to the tangent of the angle between the OX axis and the tangent to the graph of the function at a given point.


Physical meaning of the derivative: the derivative of the path with respect to time is equal to the speed of rectilinear motion.

Indeed, since school days everyone knows that speed is a particular path x=f(t) and time t . Average speed over a certain period of time:

To find out the speed of movement at a moment in time t0 you need to calculate the limit:

Rule one: set a constant

The constant can be taken out of the derivative sign. Moreover, this must be done. When solving examples in mathematics, take it as a rule - If you can simplify an expression, be sure to simplify it .

Example. Let's calculate the derivative:

Rule two: derivative of the sum of functions

The derivative of the sum of two functions is equal to the sum of the derivatives of these functions. The same is true for the derivative of the difference of functions.

We will not give a proof of this theorem, but rather consider a practical example.

Find the derivative of the function:

Rule three: derivative of the product of functions

The derivative of the product of two differentiable functions is calculated by the formula:

Example: find the derivative of a function:

Solution:

It is important to talk about calculating derivatives of complex functions here. The derivative of a complex function is equal to the product of the derivative of this function with respect to the intermediate argument and the derivative of the intermediate argument with respect to the independent variable.

In the above example we come across the expression:

In this case, the intermediate argument is 8x to the fifth power. In order to calculate the derivative of such an expression, we first calculate the derivative of the external function with respect to the intermediate argument, and then multiply by the derivative of the intermediate argument itself with respect to the independent variable.

Rule four: derivative of the quotient of two functions

Formula for determining the derivative of the quotient of two functions:

We tried to talk about derivatives for dummies from scratch. This topic is not as simple as it seems, so be warned: there are often pitfalls in the examples, so be careful when calculating derivatives.

With any questions on this and other topics, you can contact the student service. In a short time, we will help you solve the most difficult test and understand the tasks, even if you have never done derivative calculations before.