Inverse matrix. Arithmetic progression: what is it? Arithmetic progression how to find a1

When studying algebra in secondary school(9th grade) one of the important topics is the study number sequences, which include progressions - geometric and arithmetic. In this article we will look at an arithmetic progression and examples with solutions.

What is an arithmetic progression?

To understand this, it is necessary to define the progression in question, as well as provide the basic formulas that will be used later in solving problems.

An arithmetic or algebraic progression is a set of ordered rational numbers, each term of which differs from the previous one by some constant value. This value is called the difference. That is, knowing any member of an ordered series of numbers and the difference, you can restore the entire arithmetic progression.

Let's give an example. The following sequence of numbers will be an arithmetic progression: 4, 8, 12, 16, ..., since the difference in this case is 4 (8 - 4 = 12 - 8 = 16 - 12). But the set of numbers 3, 5, 8, 12, 17 can no longer be attributed to the type of progression under consideration, since the difference for it is not constant value (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Important Formulas

Let us now present the basic formulas that will be needed to solve problems using arithmetic progression. Let us denote by the symbol a n nth term sequences where n is an integer. We denote the difference by the Latin letter d. Then the following expressions are valid:

  1. To determine the value of the nth term, the following formula is suitable: a n = (n-1)*d+a 1 .
  2. To determine the sum of the first n terms: S n = (a n +a 1)*n/2.

To understand any examples of arithmetic progression with solutions in 9th grade, it is enough to remember these two formulas, since any problems of the type under consideration are based on their use. You should also remember that the progression difference is determined by the formula: d = a n - a n-1.

Example #1: finding an unknown term

Let's give a simple example of an arithmetic progression and the formulas that need to be used to solve it.

Let the sequence 10, 8, 6, 4, ... be given, you need to find five terms in it.

From the conditions of the problem it already follows that the first 4 terms are known. The fifth can be defined in two ways:

  1. Let's first calculate the difference. We have: d = 8 - 10 = -2. Similarly, you could take any two other members standing next to each other. For example, d = 4 - 6 = -2. Since it is known that d = a n - a n-1, then d = a 5 - a 4, from which we get: a 5 = a 4 + d. We substitute the known values: a 5 = 4 + (-2) = 2.
  2. The second method also requires knowledge of the difference of the progression in question, so you first need to determine it as shown above (d = -2). Knowing that the first term a 1 = 10, we use the formula for the n number of the sequence. We have: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Substituting n = 5 into the last expression, we get: a 5 = 12-2 * 5 = 2.

As you can see, both solutions led to the same result. Note that in this example the progression difference d is a negative value. Such sequences are called decreasing, since each next term is less than the previous one.

Example #2: progression difference

Now let’s complicate the task a little, let’s give an example of how

It is known that in some the 1st term is equal to 6, and the 7th term is equal to 18. It is necessary to find the difference and restore this sequence to the 7th term.

Let's use the formula to determine the unknown term: a n = (n - 1) * d + a 1 . Let's substitute the known data from the condition into it, that is, the numbers a 1 and a 7, we have: 18 = 6 + 6 * d. From this expression you can easily calculate the difference: d = (18 - 6) /6 = 2. Thus, we have answered the first part of the problem.

To restore the sequence to the 7th term, you should use the definition of an algebraic progression, that is, a 2 = a 1 + d, a 3 = a 2 + d, and so on. As a result, we restore the entire sequence: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Example No. 3: drawing up a progression

Let's complicate the problem even more. Now we need to answer the question of how to find an arithmetic progression. The following example can be given: two numbers are given, for example - 4 and 5. It is necessary to create an algebraic progression so that three more terms are placed between these.

Before starting to solve this problem, it is necessary to understand what place will be occupied given numbers in future progression. Since there will be three more terms between them, then a 1 = -4 and a 5 = 5. Having established this, we move on to the problem, which is similar to the previous one. Again, for the nth term we use the formula, we get: a 5 = a 1 + 4 * d. From: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2.25. What we got here is not an integer value of the difference, but it is rational number, so the formulas for the algebraic progression remain the same.

Now let's add the found difference to a 1 and restore the missing terms of the progression. We get: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, a 5 = 2.75 + 2.25 = 5, which coincided with the conditions of the problem.

Example No. 4: first term of progression

Let's continue to give examples of arithmetic progression with solutions. In all previous problems, the first number of the algebraic progression was known. Now let's consider a problem of a different type: let two numbers be given, where a 15 = 50 and a 43 = 37. It is necessary to find which number this sequence begins with.

The formulas used so far assume knowledge of a 1 and d. In the problem statement, nothing is known about these numbers. Nevertheless, we will write down expressions for each term about which information is available: a 15 = a 1 + 14 * d and a 43 = a 1 + 42 * d. We received two equations in which there are 2 unknown quantities (a 1 and d). This means that the problem is reduced to solving a system of linear equations.

The easiest way to solve this system is to express a 1 in each equation and then compare the resulting expressions. First equation: a 1 = a 15 - 14 * d = 50 - 14 * d; second equation: a 1 = a 43 - 42 * d = 37 - 42 * d. Equating these expressions, we get: 50 - 14 * d = 37 - 42 * d, whence the difference d = (37 - 50) / (42 - 14) = - 0.464 (only 3 decimal places are given).

Knowing d, you can use any of the 2 expressions above for a 1. For example, first: a 1 = 50 - 14 * d = 50 - 14 * (- 0.464) = 56.496.

If you have doubts about the result obtained, you can check it, for example, determine the 43rd term of the progression, which is specified in the condition. We get: a 43 = a 1 + 42 * d = 56.496 + 42 * (- 0.464) = 37.008. The small error is due to the fact that rounding to thousandths was used in the calculations.

Example No. 5: amount

Now let's look at several examples with solutions for the sum of an arithmetic progression.

Let a numerical progression of the following form be given: 1, 2, 3, 4, ...,. How to calculate the sum of 100 of these numbers?

Thanks to development computer technology you can solve this problem, that is, add all the numbers sequentially, which Calculating machine will do as soon as the person presses the Enter key. However, the problem can be solved mentally if you pay attention that the presented series of numbers is an algebraic progression, and its difference is equal to 1. Applying the formula for the sum, we get: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

It is interesting to note that this problem is called "Gaussian" because in early XVIII century, the famous German, while still only 10 years old, was able to solve it in his head in a few seconds. The boy did not know the formula for the sum of an algebraic progression, but he noticed that if you add the numbers at the ends of the sequence in pairs, you always get the same result, that is, 1 + 100 = 2 + 99 = 3 + 98 = ..., and since these sums will be exactly 50 (100 / 2), then to get the correct answer it is enough to multiply 50 by 101.

Example No. 6: sum of terms from n to m

Another typical example of the sum of an arithmetic progression is the following: given a series of numbers: 3, 7, 11, 15, ..., you need to find what the sum of its terms from 8 to 14 will be equal to.

The problem is solved in two ways. The first of them involves finding unknown terms from 8 to 14, and then summing them sequentially. Since there are few terms, this method is not quite labor-intensive. Nevertheless, it is proposed to solve this problem using a second method, which is more universal.

The idea is to obtain a formula for the sum of the algebraic progression between terms m and n, where n > m are integers. For both cases, we write two expressions for the sum:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Since n > m, it is obvious that the 2nd sum includes the first. The last conclusion means that if we take the difference between these sums and add the term a m to it (in the case of taking the difference, it is subtracted from the sum S n), we will obtain the necessary answer to the problem. We have: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). It is necessary to substitute formulas for a n and a m into this expression. Then we get: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

The resulting formula is somewhat cumbersome, however, the sum S mn depends only on n, m, a 1 and d. In our case, a 1 = 3, d = 4, n = 14, m = 8. Substituting these numbers, we get: S mn = 301.

As can be seen from the above solutions, all problems are based on knowledge of the expression for the nth term and the formula for the sum of the set of first terms. Before starting to solve any of these problems, it is recommended that you carefully read the condition, clearly understand what you need to find, and only then proceed with the solution.

Another tip is to strive for simplicity, that is, if you can answer a question without using complex mathematical calculations, then you need to do just that, since in this case the likelihood of making a mistake is less. For example, in the example of an arithmetic progression with solution No. 6, one could stop at the formula S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, and break common task into separate subtasks (in in this case first find the terms a n and a m).

If you have doubts about the result obtained, it is recommended to check it, as was done in some of the examples given. We found out how to find an arithmetic progression. If you figure it out, it's not that difficult.

For any non-singular matrix A there is a unique matrix A -1 such that

A*A -1 =A -1 *A = E,

where E is the identity matrix of the same orders as A. The matrix A -1 is called the inverse of matrix A.

In case someone forgot, in the identity matrix, except for the diagonal filled with ones, all other positions are filled with zeros, an example of an identity matrix:

Finding the inverse matrix using the adjoint matrix method

The inverse matrix is ​​defined by the formula:

where A ij - elements a ij.

Those. To calculate the inverse matrix, you need to calculate the determinant of this matrix. Then find the algebraic complements for all its elements and compose a new matrix from them. Next you need to transport this matrix. And divide each element of the new matrix by the determinant of the original matrix.

Let's look at a few examples.

Find A -1 for a matrix

Solution. Let's find A -1 using the adjoint matrix method. We have det A = 2. Let us find the algebraic complements of the elements of matrix A. In this case, the algebraic complements of the matrix elements will be the corresponding elements of the matrix itself, taken with a sign in accordance with the formula

We have A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. We form the adjoint matrix

We transport the matrix A*:

We find the inverse matrix using the formula:

We get:

Using the adjoint matrix method, find A -1 if

Solution. First of all, we calculate the definition of this matrix to verify the existence of the inverse matrix. We have

Here we added to the elements of the second row the elements of the third row, previously multiplied by (-1), and then expanded the determinant for the second row. Since the definition of this matrix is ​​nonzero, its inverse matrix exists. To construct the adjoint matrix, we find the algebraic complements of the elements of this matrix. We have

According to the formula

transport matrix A*:

Then according to the formula

Finding the inverse matrix using the method of elementary transformations

In addition to the method of finding the inverse matrix, which follows from the formula (adjoint matrix method), there is a method for finding the inverse matrix, called the method elementary transformations.

Elementary matrix transformations

The following transformations are called elementary matrix transformations:

1) rearrangement of rows (columns);

2) multiplying a row (column) by a number other than zero;

3) adding to the elements of a row (column) the corresponding elements of another row (column), previously multiplied by a certain number.

To find the matrix A -1, we construct a rectangular matrix B = (A|E) of orders (n; 2n), assigning to matrix A on the right the identity matrix E through a dividing line:

Let's look at an example.

Using the method of elementary transformations, find A -1 if

Solution. We form matrix B:

Let's denote the rows of matrix B by α 1, α 2, α 3. Let us perform the following transformations on the rows of matrix B.

Methods for finding the inverse matrix. Consider a square matrix

Let us denote Δ = det A.

The square matrix A is called non-degenerate, or not special, if its determinant is nonzero, and degenerate, or special, IfΔ = 0.

A square matrix B is for a square matrix A of the same order if their product is A B = B A = E, where E is the identity matrix of the same order as the matrices A and B.

Theorem . In order for matrix A to have an inverse matrix, it is necessary and sufficient that its determinant be different from zero.

The inverse matrix of matrix A, denoted by A- 1, so B = A - 1 and is calculated by the formula

, (1)

where A i j are algebraic complements of elements a i j of matrix A..

Calculation of A -1 using formula (1) for matrices high order is very labor-intensive, so in practice it is convenient to find A -1 using the method of elementary transformations (ET). Any non-singular matrix A can be reduced to the identity matrix E by applying only the columns (or only the rows) to the identity matrix. If the transformations perfect over the matrix A are applied in the same order to the identity matrix E, the result will be an inverse matrix. It is convenient to perform EP on matrices A and E simultaneously, writing both matrices side by side through a line. Let us note once again that when finding canonical form To find matrices, you can use transformations of rows and columns. If you need to find the inverse of a matrix, you should use only rows or only columns during the transformation process.

Example 1. For matrix find A -1 .

Solution.First we find the determinant of matrix A
This means that the inverse matrix exists and we can find it using the formula: , where A i j (i,j=1,2,3) are algebraic additions of elements a i j of the original matrix.

Where .

Example 2. Using the method of elementary transformations, find A -1 for the matrix: A = .

Solution.We assign to the original matrix on the right an identity matrix of the same order: . Using elementary transformations of the columns, we will reduce the left “half” to the identity one, simultaneously performing exactly the same transformations on the right matrix.
To do this, swap the first and second columns:
~ . To the third column we add the first, and to the second - the first, multiplied by -2: . From the first column we subtract the second doubled, and from the third - the second multiplied by 6; . Let's add the third column to the first and second: . Multiply the last column by -1: . Received to the right of the vertical bar square matrix is inverse matrix to a given matrix A. So,
.

What the main point formulas?

This formula allows you to find any BY HIS NUMBER " n" .

Of course, you also need to know the first term a 1 and progression difference d, well, without these parameters you can’t write down a specific progression.

Memorizing (or cribing) this formula is not enough. You need to understand its essence and apply the formula in various problems. And also not to forget at the right moment, yes...) How not forget- I don't know. And here how to remember If necessary, I will definitely advise you. For those who complete the lesson to the end.)

So, let's look at the formula for the nth term of an arithmetic progression.

What is a formula in general? By the way, take a look if you haven’t read it. Everything is simple there. It remains to figure out what it is nth term.

Progression in general view can be written as a series of numbers:

a 1, a 2, a 3, a 4, a 5, .....

a 1- denotes the first term of an arithmetic progression, a 3- third member, a 4- the fourth, and so on. If we are interested in the fifth term, let's say we are working with a 5, if one hundred and twentieth - s a 120.

How can we define it in general terms? any term of an arithmetic progression, with any number? Very simple! Like this:

a n

That's what it is nth term of an arithmetic progression. The letter n hides all the member numbers at once: 1, 2, 3, 4, and so on.

And what does such a record give us? Just think, instead of a number they wrote down a letter...

This notation gives us a powerful tool for working with arithmetic progression. Using the notation a n, we can quickly find any member any arithmetic progression. And solve a bunch of other progression problems. You'll see for yourself further.

In the formula for the nth term of an arithmetic progression:

a n = a 1 + (n-1)d

a 1- the first term of an arithmetic progression;

n- member number.

The formula connects the key parameters of any progression: a n ; a 1 ; d And n. All progression problems revolve around these parameters.

The nth term formula can also be used to write a specific progression. For example, the problem may say that the progression is specified by the condition:

a n = 5 + (n-1) 2.

Such a problem can be a dead end... There is neither a series nor a difference... But, comparing the condition with the formula, it is easy to understand that in this progression a 1 =5, and d=2.

And it can be even worse!) If we take the same condition: a n = 5 + (n-1) 2, Yes, open the parentheses and bring similar ones? We get a new formula:

a n = 3 + 2n.

This Just not general, but for a specific progression. This is where the pitfall lurks. Some people think that the first term is a three. Although in reality the first term is five... A little lower we will work with such a modified formula.

In progression problems there is another notation - a n+1. This is, as you guessed, the “n plus first” term of the progression. Its meaning is simple and harmless.) This is a member of the progression whose number is greater than number n by one. For example, if in some problem we take a n fifth term then a n+1 will be the sixth member. Etc.

Most often the designation a n+1 found in recurrence formulas. Don't be afraid of this scary word!) This is just a way of expressing a member of an arithmetic progression through the previous one. Let's say we are given an arithmetic progression in this form, using a recurrent formula:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

The fourth - through the third, the fifth - through the fourth, and so on. How can we immediately count, say, the twentieth term? a 20? But there’s no way!) Until we find out the 19th term, we can’t count the 20th. This is the fundamental difference between the recurrent formula and the formula of the nth term. Recurrent works only through previous term, and the formula of the nth term is through first and allows straightaway find any member by its number. Without calculating the entire series of numbers in order.

In an arithmetic progression, it is easy to turn a recurrent formula into a regular one. Count a pair of consecutive terms, calculate the difference d, find, if necessary, the first term a 1, write the formula in its usual form, and work with it. Such tasks are often encountered in the State Academy of Sciences.

Application of the formula for the nth term of an arithmetic progression.

First, let's look at the direct application of the formula. At the end previous lesson there was a problem:

An arithmetic progression (a n) is given. Find a 121 if a 1 =3 and d=1/6.

This problem can be solved without any formulas, simply based on the meaning of an arithmetic progression. Add and add... An hour or two.)

And according to the formula, the solution will take less than a minute. You can time it.) Let's decide.

The conditions provide all the data for using the formula: a 1 =3, d=1/6. It remains to figure out what is equal n. No problem! We need to find a 121. So we write:

Please pay attention! Instead of an index n a specific number appeared: 121. Which is quite logical.) We are interested in the member of the arithmetic progression number one hundred twenty one. This will be ours n. This is the meaning n= 121 we will substitute further into the formula, in brackets. We substitute all the numbers into the formula and calculate:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

That's it. Just as quickly one could find the five hundred and tenth term, and the thousand and third, any one. We put instead n the desired number in the index of the letter " a" and in brackets, and we count.

Let me remind you the point: this formula allows you to find any arithmetic progression term BY HIS NUMBER " n" .

Let's solve the problem in a more cunning way. Let us come across the following problem:

Find the first term of the arithmetic progression (a n), if a 17 =-2; d=-0.5.

If you have any difficulties, I will tell you the first step. Write down the formula for the nth term of an arithmetic progression! Yes Yes. Write down with your hands, right in your notebook:

a n = a 1 + (n-1)d

And now, looking at the letters of the formula, we understand what data we have and what is missing? Available d=-0.5, there is a seventeenth member... Is that it? If you think that’s it, then you won’t solve the problem, yes...

We still have a number n! In condition a 17 =-2 hidden two parameters. This is both the value of the seventeenth term (-2) and its number (17). Those. n=17. This “trifle” often slips past the head, and without it, (without the “trifle”, not the head!) the problem cannot be solved. Although... and without a head too.)

Now we can simply stupidly substitute our data into the formula:

a 17 = a 1 + (17-1)·(-0.5)

Oh yes, a 17 we know it's -2. Okay, let's substitute:

-2 = a 1 + (17-1)·(-0.5)

That's basically all. It remains to express the first term of the arithmetic progression from the formula and calculate it. The answer will be: a 1 = 6.

This technique - writing down a formula and simply substituting known data - helps a lot in simple tasks. Well, of course, you must be able to express a variable from a formula, but what to do!? Without this skill, mathematics may not be studied at all...

Another popular puzzle:

Find the difference of the arithmetic progression (a n), if a 1 =2; a 15 =12.

What are we doing? You will be surprised, we are writing the formula!)

a n = a 1 + (n-1)d

Let's consider what we know: a 1 =2; a 15 =12; and (I’ll especially highlight!) n=15. Feel free to substitute this into the formula:

12=2 + (15-1)d

We do the arithmetic.)

12=2 + 14d

d=10/14 = 5/7

This is the correct answer.

So, the tasks for a n, a 1 And d decided. All that remains is to learn how to find the number:

The number 99 is a member of the arithmetic progression (a n), where a 1 =12; d=3. Find this member's number.

We substitute the quantities known to us into the formula of the nth term:

a n = 12 + (n-1) 3

At first glance, there are two unknown quantities here: a n and n. But a n- this is some member of the progression with a number n...And we know this member of the progression! It's 99. We don't know its number. n, So this number is what you need to find. We substitute the term of the progression 99 into the formula:

99 = 12 + (n-1) 3

We express from the formula n, we think. We get the answer: n=30.

And now a problem on the same topic, but more creative):

Determine whether the number 117 is a member of the arithmetic progression (a n):

-3,6; -2,4; -1,2 ...

Let's write the formula again. What, there are no parameters? Hm... Why are we given eyes?) Do we see the first term of the progression? We see. This is -3.6. You can safely write: a 1 = -3.6. Difference d Can you tell from the series? It’s easy if you know what the difference of an arithmetic progression is:

d = -2.4 - (-3.6) = 1.2

So, we did the simplest thing. It remains to deal with the unknown number n and the incomprehensible number 117. In the previous problem, at least it was known that it was the term of the progression that was given. But here we don’t even know... What to do!? Well, what to do, what to do... Turn on Creative skills!)

We suppose that 117 is, after all, a member of our progression. With an unknown number n. And, just like in the previous problem, let's try to find this number. Those. we write the formula (yes, yes!)) and substitute our numbers:

117 = -3.6 + (n-1) 1.2

Again we express from the formulan, we count and get:

Oops! The number turned out fractional! One hundred and one and a half. And fractional numbers in progressions can not be. What conclusion can we draw? Yes! Number 117 is not member of our progression. It is somewhere between the one hundred and first and one hundred and second terms. If the number turned out natural, i.e. is a positive integer, then the number would be a member of the progression with the number found. And in our case, the answer to the problem will be: No.

Task based real option GIA:

Arithmetic progression given by the condition:

a n = -4 + 6.8n

Find the first and tenth terms of the progression.

Here the progression is set in an unusual way. Some kind of formula... It happens.) However, this formula (as I wrote above) - also the formula for the nth term of an arithmetic progression! She also allows find any member of the progression by its number.

We are looking for the first member. The one who thinks. that the first term is minus four is fatally mistaken!) Because the formula in the problem is modified. The first term of the arithmetic progression in it hidden. It’s okay, we’ll find it now.)

Just as in previous problems, we substitute n=1 into this formula:

a 1 = -4 + 6.8 1 = 2.8

Here! The first term is 2.8, not -4!

We look for the tenth term in the same way:

a 10 = -4 + 6.8 10 = 64

That's it.

And now, for those who have read to these lines, the promised bonus.)

Suppose, in a difficult combat situation, State Examination or Unified State Examination, you forgot useful formula nth term of an arithmetic progression. I remember something, but somehow uncertainly... Or n there, or n+1, or n-1... How to be!?

Calm! This formula is easy to derive. Not very strictly, but for confidence and the right decision definitely enough!) To make a conclusion, it is enough to remember the elementary meaning of an arithmetic progression and have a couple of minutes of time. You just need to draw a picture. For clarity.

Draw a number line and mark the first one on it. second, third, etc. members. And we note the difference d between members. Like this:

We look at the picture and think: what does the second term equal? Second one d:

a 2 =a 1 + 1 d

What is the third term? Third term equals first term plus two d.

a 3 =a 1 + 2 d

Do you get it? It’s not for nothing that I highlight some words in bold. Okay, one more step).

What is the fourth term? Fourth term equals first term plus three d.

a 4 =a 1 + 3 d

It's time to realize that the number of gaps, i.e. d, Always one less than the number of the member you are looking for n. That is, to the number n, number of spaces will n-1. Therefore, the formula will be (without variations!):

a n = a 1 + (n-1)d

In general, visual pictures are very helpful in solving many problems in mathematics. Don't neglect the pictures. But if it’s difficult to draw a picture, then... only a formula!) In addition, the formula of the nth term allows you to connect the entire powerful arsenal of mathematics to the solution - equations, inequalities, systems, etc. You can't insert a picture into the equation...

Tasks for independent solution.

To warm up:

1. In arithmetic progression (a n) a 2 =3; a 5 =5.1. Find a 3 .

Hint: according to the picture, the problem can be solved in 20 seconds... According to the formula, it turns out more difficult. But for mastering the formula, it’s more useful.) In Section 555, this problem is solved using both the picture and the formula. Feel the difference!)

And this is no longer a warm-up.)

2. In arithmetic progression (a n) a 85 =19.1; a 236 =49, 3. Find a 3 .

What, you don’t want to draw a picture?) Of course! Better according to the formula, yes...

3. The arithmetic progression is given by the condition:a 1 = -5.5; a n+1 = a n +0.5. Find the one hundred and twenty-fifth term of this progression.

In this task, the progression is specified in a recurrent manner. But counting to the one hundred and twenty-fifth term... Not everyone is capable of such a feat.) But the formula of the nth term is within the power of everyone!

4. Given an arithmetic progression (a n):

-148; -143,8; -139,6; -135,4, .....

Find the number of the smallest positive term of the progression.

5. According to the conditions of task 4, find the sum of the smallest positive and largest negative terms of the progression.

6. The product of the fifth and twelfth terms of an increasing arithmetic progression is equal to -2.5, and the sum of the third and eleventh terms is equal to zero. Find a 14 .

Not the easiest task, yes...) The “fingertip” method won’t work here. You will have to write formulas and solve equations.

Answers (in disarray):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Happened? It's nice!)

Not everything works out? Happens. By the way, there is one subtle point in the last task. Care will be required when reading the problem. And logic.

The solution to all these problems is discussed in detail in Section 555. And the element of fantasy for the fourth, and the subtle point for the sixth, and general approaches for solving any problems involving the formula of the nth term - everything is described. I recommend.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Matrix determinant

Finding the determinant of a matrix is ​​a very common problem in higher mathematics and algebra. As a rule, one cannot do without the value of the matrix determinant when solving complex systems equations. The Cramer method for solving systems of equations is based on calculating the determinant of a matrix. Using the definition of a determinant, the presence and uniqueness of a solution to a system of equations is determined. Therefore, it is difficult to overestimate the importance of the ability to correctly and accurately find the determinant of a matrix in mathematics. Methods for solving determinants are theoretically quite simple, but as the size of the matrix increases, the calculations become very cumbersome and require great care and a lot of time. It is very easy to make a minor mistake or typo in such complex mathematical calculations, which will lead to an error in the final answer. So even if you find matrix determinant yourself, it is important to check the result. This can be done with our service Finding the determinant of a matrix online. Our service always produces absolutely accurate results, containing no errors or clerical errors. You can refuse independent calculations, because from an applied point of view, finding determinant of the matrix It is not educational in nature, but simply requires a lot of time and numerical calculations. Therefore, if in your task definition of matrix determinant are auxiliary, side calculations, use our service and find the determinant of a matrix online!

All calculations are carried out automatically with the highest accuracy and are absolutely free. We have a very convenient interface for entering matrix elements. But the main difference between our service and similar ones is the possibility of obtaining a detailed solution. Our service at calculating the determinant of a matrix online always uses the simplest and shortest method and describes in detail each step of transformations and simplifications. So you get not just the value of the determinant of the matrix, the final result, but also a whole detailed solution.