Что значит точка экстремума функции. Экстремумы функции: признаки существования, примеры решений. Определение убывающей функции

Урок на тему: "Нахождение точек экстремумов функций. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Введение.
2. Точки минимума и максимума.

4. Как вычислять экстремумы?
5. Примеры.

Введение в экстремумы функций

Ребята, давайте посмотрим на график некоторой функции:

Заметит, что поведение нашей функции y=f (x) во многом определяется двумя точками x1 и x2. Давайте внимательно посмотрим на график функции в этих точках и около них. До точки x2 функция возрастает, в точке x2 происходит перегиб, и сразу после этой точки функция убывает до точки x1. В точке x1 функция опять перегибается, и после этого - опять возрастает. Точки x1 и x2 пока так и будем называть точками перегиба. Давайте проведем касательные в этих точках:


Касательные в наших точках параллельны оси абсцисс, а значит, угловой коэффициент касательной равен нулю. Это значит, что и производная нашей функции в этих точках равна нулю.

Посмотрим на график вот такой функции:


Касательные в точках x2 и x1 провести невозможно. Значит, производной в этих точках не существует. Теперь посмотрим опять на наши точки на двух графиках. Точка x2 - это точка, в которой функция достигает наибольшего значения в некоторой области (рядом с точкой x2). Точка x1 - это точка, в которой функция достигает своего наименьшего значения в некоторой области (рядом с точкой x1).

Точки минимума и максимума

Определение: Точку x= x0 называют точкой минимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≥ f(x0).

Определение: Точку x=x0 называют точкой максимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≤ f(x0).

Ребята, а что такое окрестность?

Определение: Окрестность точки - множество точек, содержащее нашу точку, и близкие к ней.

Окрестность мы можем задавать сами. Например, для точки x=2, мы можем определить окрестность в виде точек 1 и 3.

Вернемся к нашим графикам, посмотрим на точку x2, она больше всех других точек из некоторой окрестности, тогда по определению - это точка максимума. Теперь посмотрим на точку x1, она меньше всех других точек из некоторой окрестности, тогда по определению - это точка минимума.

Ребята, давайте введем обозначения:

Y min - точка минимума,
y max - точка максимума.

Важно! Ребята, не путайте точки максимума и минимума с наименьшим и наибольшим значение функции. Наименьшее и наибольшее значения ищутся на всей области определения заданной функции, а точки минимума и максимума в некоторой окрестности.

Экстремумы функции

Для точек минимума и максимума есть общей термин – точки экстремума.

Экстремум (лат. extremum – крайний) – максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума.

Соответственно, если достигается минимум – точка экстремума называется точкой минимума, а если максимум – точкой максимума.

Как же искать экстремумы функции?

Давайте вернемся к нашим графикам. В наших точках производная либо обращается в нуль (на первом графике), либо не существует (на втором графике).

Тогда можно сделать важное утверждение: Если функция y= f(x) имеет экстремум в точке x=x0, то в этой точке производная функции либо равна нулю, либо не существует.

Точки, в которых производная равна нулю называются стационарными.

Точки, в которых производной функции не существует, называются критическими.

Как вычислять экстремумы?

Ребята, давайте опять вернемся к первому графику функции:


Анализируя этот график, мы говорили: до точки x2 функция возрастает, в точке x2 происходит перегиб, и после этой точки функция убывает до точки x1. В точке x1 у функции опять перегибается, и после этого функция опять возрастает.

На основании таких рассуждений, можно сделать вывод, что функция в точках экстремума меняет характер монотонности, а значит и производная функция меняет знак. Вспомним: если функция убывает, то производная меньше либо равно нулю, а если функция возрастает, то производная больше либо равна нулю.

Обобщим полученные знания утверждением:

Теорема: Достаточное условие экстремума: пусть функция y=f(x) непрерывна на некотором промежутке Х и имеет внутри промежутка стационарную или критическую точку x= x0. Тогда:

  • Если у этой точки существует такая окрестность, в которой при x x0 выполняется f’(x)>0, то точка x0 – точка минимума функции y= f(x).
  • Если у этой точки существует такая окрестность, в которой при x 0, а при x> x0 выполняется f’(x) Если у этой точки существует такая окрестность, в которой и слева и справа от точки x0 знаки производной одинаковы, то в точке x0 экстремума нет.

Для решении задач запомните такие правила: Если знаки производных определены то:


Алгоритм исследования непрерывной функции y= f(x) на монотонность и экстремумы:

  • Найти производную y’.
  • Найти стационарные(производная равна нулю) и критические точки (производная не существует).
  • Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
  • По указанным выше утверждениям сделать вывод о характере точек экстремума.

Примеры нахождения точки экстремумов

1) Найти точки экстремума функции и определить их характер: y= 7+ 12*x - x 3

Решение: Наша функция непрерывна, тогда воспользуемся нашим алгоритмом:
а) y"= 12 - 3x 2 ,
б) y"= 0, при x= ±2,

Точка x= -2 - точка минимума функции, точка x= 2 - точка максимума функции.
Ответ: x= -2 - точка минимума функции, x= 2 - точка максимума функции.

2) Найти точки экстремума функции и определить их характер.

Решение: Наша функция непрерывна. Воспользуемся нашим алгоритмом:
а) б) в точке x= 2 производная не существует, т.к. на нуль делить нельзя, Область определения функции: , в этой точки экстремума нет, т.к. окрестность точки не определена. Найдем значения, в которой производная равна нулю: в) Отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= 3 - точка минимума функции.
Ответ: x= 3 - точка минимума функции.

3) Найти точки экстремума функции y= x - 2cos(x) и определить их характер, при -π ≤ x ≤ π.

Решение: Наша функция непрерывна, воспользуемся нашим алгоритмом:
а) y"= 1 + 2sin(x),
б) найдем значения в которой производная равна нулю: 1 + 2sin(x)= 0, sin(x)= -1/2,
т.к. -π ≤ x ≤ π, то: x= -π/6, -5π/6,
в) отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -5π/6 - точка максимума функции.
Точка x= -π/6 - точка минимума функции.
Ответ: x= -5π/6 - точка максимума функции, x= -π/6 - точка минимума функции.

4) Найти точки экстремума функции и определить их характер:

Решение: Наша функция имеет разрыв только в одной точке x= 0. Воспользуемся алгоритмом:
а)
б) найдем значения в которой производная равна нулю: y"= 0 при x= ±2,
в) отметим стационарные точки на числовой прямой и определим знаки производной:
г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -2 точка минимума функции.
Точка x= 2 - точка минимума функции.
В точке x= 0 функция не существует.
Ответ: x= ±2 - точки минимума функции.

Задачи для самостоятельного решения

а) Найти точки экстремума функции и определить их характер: y= 5x 3 - 15x - 5.
б) Найти точки экстремума функции и определить их характер:
в) Найти точки экстремума функции и определить их характер: y= 2sin(x) - x при π ≤ x ≤ 3π.
г) Найти точки экстремума функции и определить их характер:

Функцияy = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство(f(x 1) < f (x 2) (f(x 1) >f(x 2)).

Если дифференцируемая функцияy = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x) > 0 , (f " (x) < 0).

Точкаx о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о), (f(x) ≥f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет f " (x) в окрестности точки x о и вторую производную f "" (x 0) в самой точке x о . Если f " (x о) = 0, f "" (x 0)>0, (f "" (x 0)<0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же f "" (x 0)=0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y =f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y . Площадь площадки равна S =xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x +y =a. Поэтому y = a - 2x и S =x(a - 2x), где 0 ≤x ≤a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда y = a - 2×a/4 = a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x < a/4, S " > 0, а при x > a/4, S " < 0, значит, в точке x = a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед). Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24.

Решение.
R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функцииf(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимумf(2) = 14 и минимумf(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеетсяa погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки черезx иy . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x +y =a. Поэтому y = a - 2x и S = x(a - 2x), где
0 ≤x ≤a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2a/4 = a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. Приx < a/4, S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед). Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S " (R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Простой алгоритм нахождения экстремумов..

  • Находим производную функции
  • Приравниваем эту производную к нулю
  • Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль)
  • Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум
  • Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.

Из точек, подозрительных на экстремум, надо найти именно . Для этого смотрим на наши промежутки на координатной прямой. Если при прохождении через какую-то точку знак производной меняется с плюса на минус, то эта точка будет максимумом , а если с минуса на плюс, то минимумом .

Чтобы найти наибольшее и наименьшее значение функции, нужно вычислить значение функции на концах отрезка и в точках экстремума. Затем выбрать наибольшее и наименьшее значение.

Рассмотрим пример
Находим производную и приравниваем её к нулю:

Полученные значения переменных наносим на координатную прямую и высчитываем знак производной на каждом из промежутков. Ну например, для первого возьмём -2 , тогда производная будет равна -0,24 , для второго возьмём 0 , тогда производная будет 2 , а для третьего возьмём 2 , тогда производная будет -0,24. Проставляем соответствующие знаки.

Видим, что при прохождении через точку -1 производная меняет знак с минуса на плюс, то есть это будет точка минимума, а при прохождении через 1 – с плюса на минус, соответственно это точка максимума.

Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось вдоль ровной стороны пилы, а ось - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.

Совершенно очевидно, что и в точке , и в точке значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точке - наименьшим в сравнении с соседними точками. Точки называются точками экстремума функции (от латинского extremum - «крайний»), точки и - точками максимума, а точка - точкой минимума (от латинских maximum и minimum - «наибольший» и «наименьший»).

Уточним определение экстремума.

Говорят, что функция в точке имеет максимум, если найдется интервал, содержащий точку и принадлежащий области определения функции, такой, что для всех точек этого интервала оказывается . Соответственно функция в точке имеет минимум, если для всех точек некоторого интервала выполняется условие .

На рис. 2 и 3 приведены графики функций, имеющие в точке экстремум.

Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке она имеет минимум.

Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое , то получим определение нестрогого максимума (нестрогого минимума). Рассмотрим для примера профиль вершины горы (рис. 4). Каждая точка плоской площадки - отрезка является точкой нестрогого максимума.

В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция в точке имеет экстремум. Если в этой точке существует производная , то она равна нулю.

На геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.

Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.

Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка будет точкой минимума. Напротив, точка будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.

Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.

Исследуем на экстремум функцию .

Найдем ее производную: .

ФУНКЦИИ И ПРЕДЕЛЫ IX

§ 205. Экстремальные значения функции

В этом параграфе мы изучим некоторые вопросы поведения функции у = f (х ) в интервале [а, b ]. При этом, конечно, мы будем предполагать, что функция f (х ) определена в каждой точке этого интервала.

Наибольшее из всех тех значений, которые принимает функция у = f (х ) в интервале [а, b ], называется ее абсолютным максимумом, а наименьшее - абсолютным минимумом в данном интервале.

Например, для функции у = f (х ) , графически представленной на рисунке 274, абсолютным минимумом в интервале является значение f (0) = 1, а абсолютным максимумом - значение f (6) =5.

Наряду с абсолютным максимумом и абсолютным минимумом в математике часто говорят о локальных (т. е. местных) максимумах и минимумах.

Точка х = с , лежащая внутри интервала [а, b ], называется точкой локального максимума функции у = f (х ) , если для всех значений х , достаточно близких к с ,

f (х ) < f (с ) . (1)

Значения функции у = f (х ) в точках ее локальных максимумов называются локальными максимумами этой функции.

Например, для функции у = f (х ) , графически представленной на рисунке 274, точками локального максимума являются точки х = 2 и х = 6, а самими локальными максимумами - значения

f (2) = 3 и f (6) = 5.

В точках х = 2 и х = 6 функция f (х ) принимает значения, большие, чем в соседних точках, достаточно близких к ним:

f (2) >f (х ); f (6) > f (х ).

Для функции у = f (х ) , графически представленной на рисунке 275, точкой локального максимума будет, например, точка х = с . Для всех х , достаточно близких к с ,

f (х ) = f (с ) ,

так что условие (1) выполняется.

Точка х = x 1 также является точкой локального максимума. Для всех значений х , достаточно близких к x 1 f (х ) < f (x 1), если х < x 1 , и f (х ) = f (x 1), если х > x 1 . Следовательно, и в этом случае f (х ) < f (x 1). А вот точка х = x 2 уже не будет точкой локального максимума. Левее ее f (х ) = f (x 2), но правее ее f (х ) > f (x 2),. Поэтому условие (1) не выполняется.

Точка х = с , лежащая внутри интервала [а, b ], называется точкой локального минимума функции у = f (х ), если для всех значений х , достаточно близких к с,

f (х ) > f (с ) . (2)

Значения функции в точках еe локальных минимумов называются локальными минимумами этой функции.

Например, для функции у = f (х ) , графически представленной на рисунке 274, точкой локального минимума является точка х = 3, а самим локальным минимумом - значение f (3) = 2.

Для функции, графически представленной на рисунке 275, точкой локального минимума будет, например, точка х = x 2 . Для всех значений х , достаточно близких к x 2 , f (х ) = f (x 2), если х < x 2 , и f (х ) > f (x 2), если х > x 2 . Следовательно, условие f (х ) > f (x 2) выполняется.

Точка х = с , отмеченная нами выше как точка локального максимума, является вместе с тем и точкой локального минимума. Ведь для всех точек х , достаточно близких к ней,

f (х ) = f (с ),

и потому формально неравенство f (х ) > f (с ) выполняется.

Точки минимумов и точки максимумов функции f (х ) называются точками экстремумов этой функции. Значения функции f (х ) в точках экстремумов называются экстремальными значениями этой функции.

Рисунок 274 показывает различие между абсолютными и локальными экстремумами. Функция у = f (х ) , изображенная на этом рисунке, имеет в точке х = 2 локальный максимум, который не является абсолютным максимумом в интервале . Точно так же и точке х = 3 эта функция имеет локальный минимум, не являющийся абсолютным минимумом в интервале .

Если абсолютный максимум функции у = f (х ) в интервале [а, b ] достигается во внутренней точке этого интервала, то этот абсолютный максимум является, очевидно, и локальным максимумом (см., например, рис. 274 в точке х = 6). Но может случиться, что этот абсолютный максимум достигается не внутри интервала [a, b ], а в какой-нибудь крайней его точке (рис. 276).

Тогда он не является локальным максимумом. Отсюда вытекает следующее правило для нахождения абсолютного максимума функции у = f (х ) в интервале [a, b ],

1. Находим все локальные максимумы функции у = f (х ) в данном интервале.

2. К полученным значениям добавляем значения этой функции в концах данного интервала, то есть значения f (а ) и f (b ).

Наибольшее из всех этих значений и даст нам абсолютный максимум функции у = f (х ) в интервале [a, b ] . Аналогично находится и абсолютный минимум функции у = f (х ) в интервале [a, b ].

Пример. Найти все локальные экстремумы функции у = x 2 - 2х - 3. Каковы наибольшее и наименьшее значения этой функции в интервале ?

Преобразуем данную функцию, выделив полный квадрат:

у = x 2 - 2х + 1 -4 = (х - 1) 2 - 4.

Теперь легко построить ее график. Это будет направленная вверх парабола с вершиной в точке (1, -4) (рис. 277).

Единственной точкой локального экстремума является точка х = 1. В этой точке функция имеет локальный минимум, равный -4. Чтобы найти наибольшее и наименьшее значения данной функции в интервале , заметим, что при x = 0 у = - 3, а при х = 5 у = 12. Из трех значений -4, -3 и 12 наименьшим является -4, а наибольшим 12. Таким образом, наименьшее значение (абсолютный минимум) данной функции в интервале равно -4; оно достигается при х = 1. Наибольшее значение (абсолютный максимум) данной функции в интервале равно 12; оно достигается при х = 5.

Упражнения

1589. Какие из известных вам функций на всей числовой прямой:

а) совсем не имеют локальных экстремумов;

б) имеют ровно один локальный экстремум;

в) имеют бесконечное множество локальных экстремумов?

В упражнениях № 1590-1600 найти точки локальных экстремумов и сами локальные экстремумы данных функций. Выяснить, какие это экстремумы (максимумы или минимумы):

Найти абсолютные экстремумы данных функций в указанных интервалах (№ 1601-1603):

1601. у = - 2x 2 - 3x - 1 в интервале | х | < 2.

1602. у = |x 2 + 5x + 6| в интервале [- 5, 4].

1603. у = sin x - cos x в интервале [- π / 3 , π / 3 ]

1604. Найти абсолютные экстремумы функции

у = (х - 3) (х - 5)

в интервалах.