Грамотное преобразование рациональных выражений. Преобразование выражений с дробями, примеры, решения Выражения обыкновенные дроби преобразуем

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
  2. Затем - деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения

  1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

    • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

    Приведение подобных членов

    1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

      • Например, упростите выражение 1 + 2x - 3 + 4x .
    2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

      • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
    3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

      • 2x + 4x =
      • 1 - 3 = -2
    4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

      • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
    5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

      • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
        • 5(3x-1) + x((2x)/(2)) + 8 - 3x
        • 15x - 5 + x(x) + 8 - 3x
        • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
        • x 2 + (15x - 3x) + (8 - 5)
        • x 2 + 12x + 3

    Вынесение множителя за скобки

    1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

      • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
    2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

      • В нашем примере разделите каждый член выражения на 3.
        • 9x 2 /3 = 3x 2
        • 27x/3 = 9x
        • -3/3 = -1
        • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
    3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

      • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
    4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

      • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
        • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
        • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
        • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

    Дополнительные методы упрощения

    1. Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение.

      • Например, рассмотрим дробное выражение (5x 2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x 2 не делится на 10 нацело (так как 5 меньше 10).
        • Поэтому запишите упрощенное выражение так: ((5x 2)/10) + x + 2 = (1/2)x 2 + x + 2.
    2. Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня.

      • Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
        • √(90)
        • √(9×10)
        • √(9)×√(10)
        • 3×√(10)
        • 3√(10)
    3. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

      • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
        • 6x 3 × 8x 4 + (x 17 /x 15)
        • (6 × 8)x 3 + 4 + (x 17 - 15)
        • 48x 7 + x 2
      • Далее приведено объяснение правила умножения и деления членов со степенью.
        • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
        • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  2. ${{\left(a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left(a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left(3{{y}^{2}} \right)}^{2}}-{{\left(4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left(3{{y}^{2}}-4x \right)\left(3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left(x-... \right)\left(x-... \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left(x-1 \right)\left(x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left(x-y \right)\left(x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left(x-y \right)\left(x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left(3y \right)}^{2}}-{{\left(2x \right)}^{2}}}{{{\left(2x \right)}^{3}}+{{\left(3y \right)}^{3}}}=\]

\[=\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{\left(3y-2x \right)\left(3y+2x \right)}{\left(2x+3y \right)\left({{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{3\cdot \left(-1 \right)}{2\cdot \left(x-2 \right)\cdot \left(-1 \right)}=\frac{3}{2\left(x-2 \right)}\]

Ответ: $\frac{3}{2\left(x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Ответ: $\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{3}}+8-\left({{x}^{2}}+2x+{{2}^{2}} \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left(x-2 \right)\left(x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.

Определение и примеры рациональных выражений

Определение 1

Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.

Для примера имеем, что 5 , 2 3 · x - 5 , - 3 · a · b 3 - 1 c 2 + 4 a 2 + b 2 1 + a: (1 - b) , (x + 1) · (y - 2) x 5 - 5 · x · y · 2 - 1 11 · x 3 .

То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями.Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.

Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.

Основные виды преобразований рациональных выражений

Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.

Пример 1

Преобразовать рациональное выражение 3 · x x · y - 1 - 2 · x x · y - 1 .

Решение

Видно, что такое рациональное выражение – это разность 3 · x x · y - 1 и 2 · x x · y - 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид

3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 · 3 - 2 = x x · y - 1

Ответ: 3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 .

Пример 2

Выполнить преобразование 2 · x · y 4 · (- 4) · x 2: (3 · x - x) .

Решение

Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · (- 4) · x 2: (3 · x - x) = 2 · x · y 4 · (- 4) · x 2: 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.

Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · (- 4) · x 2: 2 · x = 2 · x · y 4 · (- 4) · x 2: 2: x .

Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что

2 · x · y 4 · (- 4) · x 2: 2: x = (2 · (- 4) : 2) · (x · x 2: x) · y 4 = - 4 · x 2 · y 4

Ответ: 2 · x · y 4 · (- 4) · x 2: (3 · x - x) = - 4 · x 2 · y 4 .

Пример 3

Преобразовать выражение вида x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 .

Решение

Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида (x · (x + 3) - (3 · x + 1)) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 = x 2 + 3 · x - 3 · x - 1 1 2 · 4 · x + 2 = x 2 - 1 2 · x + 2 .

Преобразуем в числителе формулу разности квадратов, тогда получаем, что

x 2 - 1 2 · x + 2 = (x - 1) · (x + 1) 2 · (x + 1) = x - 1 2

Ответ : x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 = x - 1 2 .

Представление в виде рациональной дроби

Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.

Пример 4

Представить в виде рациональной дроби a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a .

Решение

Данное выражение можно представить в виде a 2 - 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.

Следует начать с умножения, тогда получим, что

a 2 - 25 a + 3 · 1 a 2 + 5 · a = a - 5 · (a + 5) a + 3 · 1 a · (a + 5) = a - 5 · (a + 5) · 1 (a + 3) · a · (a + 5) = a - 5 (a + 3) · a

Производим представление полученного результата с исходное. Получим, что

a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a - 3 - a - 5 a + 3 · a

Теперь выполняем вычитание:

a + 5 a · a - 3 - a - 5 a + 3 · a = a + 5 · a + 3 a · (a - 3) · (a + 3) - (a - 5) · (a - 3) (a + 3) · a · (a - 3) = = a + 5 · a + 3 - (a - 5) · (a - 3) a · (a - 3) · (a + 3) = a 2 + 3 · a + 5 · a + 15 - (a 2 - 3 · a - 5 · a + 15) a · (a - 3) · (a + 3) = = 16 · a a · (a - 3) · (a + 3) = 16 a - 3 · (a + 3) = 16 a 2 - 9

После чего очевидно, что исходное выражение примет вид 16 a 2 - 9 .

Ответ: a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 - 9 .

Пример 5

Представить x x + 1 + 1 2 · x - 1 1 + x в виде рациональной дроби.

Решение

Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x - 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · (x + 1) 1 · (x + 1) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1

Следует, что x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 x + 1 2 · x - 1 1 + x

Получившаяся дробь может быть записана как 2 · x + 1 x + 1: 2 · x - 1 1 + x .

После деления придем к рациональной дроби вида

2 · x + 1 x + 1: 2 · x - 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x - 1 = 2 · x + 1 · (1 + x) (x + 1) · (2 · x - 1) = 2 · x + 1 2 · x - 1

Можно решить это иначе.

Вместо деления на 2 · x - 1 1 + x производим умножение на обратную ей 1 + x 2 · x - 1 . Применим распределительное свойство и получаем, что

x x + 1 + 1 2 · x - 1 1 + x = x x + 1 + 1: 2 · x - 1 1 + x = x x + 1 + 1 · 1 + x 2 · x - 1 = = x x + 1 · 1 + x 2 · x - 1 + 1 · 1 + x 2 · x - 1 = x · 1 + x (x + 1) · 2 · x - 1 + 1 + x 2 · x - 1 = = x 2 · x - 1 + 1 + x 2 · x - 1 = x + 1 + x 2 · x - 1 = 2 · x + 1 2 · x - 1

Ответ: x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 2 · x - 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter