Вычисление пределов функций онлайн. Пределы Lim x стремится к 1 2

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение

а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$

б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Предел функции - число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a .

Или другими словами, число A является пределом функции y = f (x) в точке x 0 , если для всякой последовательности точек из области определения функции , не равных x 0 , и которая сходится к точке x 0 (lim x n = x0) , последовательность соответствующих значений функции сходится к числу A .

График функции, предел которой при аргументе, который стремится к бесконечности, равен L :

Значение А является пределом (предельным значением) функции f (x) в точке x 0 в случае, если для всякой последовательности точек , которая сходится к x 0 , но которая не содержит x 0 как один из своих элементов (т.е. в проколотой окрестности x 0 ), последовательность значений функции сходится к A .

Предел функции по Коши.

Значение A будет являться пределом функции f (x) в точке x 0 в случае, если для всякого вперёд взятого неотрицательного числа ε будет найдено соответствующее ему неотрицательно число δ = δ(ε) такое, что для каждого аргумента x , удовлетворяющего условию 0 < | x - x0 | < δ , будет выполнено неравенство | f (x) A | < ε .

Будет очень просто, если вы понимаете суть предела и основные правила нахождения его. То, что предел функции f (x) при x стремящемся к a равен A , записывается таким образом:

Причем значение, к которому стремится переменная x , может быть не только числом, но и бесконечностью (∞), иногда +∞ или -∞, либо предела может вообще не быть.

Чтоб понять, как находить пределы функции , лучше всего посмотреть примеры решения.

Необходимо найти пределы функции f (x) = 1/ x при:

x → 2, x → 0, x ∞.

Найдем решение первого предела. Для этого можно просто подставить вместо x число, к которому оно стремится, т.е. 2, получим:

Найдем второй предел функции . Здесь подставлять в чистом виде 0 вместо x нельзя, т.к. делить на 0 нельзя. Но мы можем брать значения, приближенные к нулю, к примеру, 0,01; 0,001; 0,0001; 0,00001 и так далее, причем значение функции f (x) будет увеличиваться: 100; 1000; 10000; 100000 и так далее. Т.о., можно понять, что при x → 0 значение функции, которая стоит под знаком предела, будет неограниченно возрастать, т.е. стремиться к бесконечности. А значит:

Касаемо третьего предела. Такая же ситуация, как и в прошлом случае, невозможно подставить в чистом виде. Нужно рассмотреть случай неограниченного возрастания x . Поочередно подставляем 1000; 10000; 100000 и так далее, имеем, что значение функции f (x) = 1/ x будет убывать: 0,001; 0,0001; 0,00001; и так далее, стремясь к нулю. Поэтому:

Необходимо вычислить предел функции

Приступая к решению второго примера, видим неопределенность . Отсюда находим старшую степень числителя и знаменателя - это x 3 , выносим в числителе и знаменателе его за скобки и далее сокращаем на него:

Ответ

Первым шагом в нахождении этого предела , подставим значение 1 вместо x , в результате чего имеем неопределенность . Для её решения разложим числитель на множители , сделаем это методом нахождения корней квадратного уравнения x 2 + 2 x - 3 :

D = 2 2 - 4*1*(-3) = 4 +12 = 16 D = √16 = 4

x 1,2 = (-2 ± 4) / 2 x 1 = -3; x 2 = 1.

Таким образом, числитель будет таким:

Ответ

Это определение его конкретного значения или определенной области, куда попадает функция, которая ограничена пределом.

Чтобы решить пределы, следуйте правилам:

Разобравшись в сути и основных правилах решения предела , вы получите базовое понятие о том, как их решать.

Что такое предел? Понятие предела

Все без исключения где-то в глубине души понимают, что такое предел, но как только слышат «предел функции» или «предел последовательности», то возникает легкая растерянность.

Не бойтесь, это всего лишь от незнаний! Через 3 минуты прочтения ниженаписанного, вы станете грамотнее.

Важно раз и навсегда понять, что имеют в виду, когда говорят о каких-то предельных положениях, значениях, ситуациях и вообще, когда по жизни прибегают к термину предела.

Взрослые люди это понимает интуитивно, а мы разберем на нескольких примерах.

Пример первый

Вспомним строки из песни группы «Чайф»: «… не доводи до предела, до предела не доводи …».

Пример второй

Наверняка вы слышали фразу о предельно устойчивом положении предмета в пространстве.

Вы сами можете без труда смоделировать такую ситуацию с подручными вещами.

Например, слегка наклоните пластиковую бутылку и отпустите её. Она обратно встанет на днище.

Но есть такие предельные наклонные положения, за границами которых она просто упадет.

Опять же предельное положение в данном случае - это нечто конкретное. Важно это понимать.

Можно много приводить примеров использования термина предела: предел человеческих возможностей, предел прочности материала и так далее.

Ну а с беспределами так вообще каждый день сталкиваемся)))

Но сейчас нас интересуют предел последовательности и предел функции в математике.

Предел числовой последовательности в математике

Предел (числовой последовательности) - одно из основных понятий математического анализа. На понятии предельного перехода базируются сотни и сотни теорем, определяющие современную науку.

Сразу конкретный пример для наглядности.

Допустим есть бесконечная последовательность чисел, каждое из которых в два раза меньше предыдущего, начиная с единицы: 1, ½, ¼, ...

Так вот предел числовой последовательности (если он существует) – это какое-то конкретное значение.

В процессе деления пополам каждое последующее значение последовательности неограниченно приближается к определенному числу.

Несложно догадаться, что это будет ноль.

Важно!

Когда мы говорим о существовании предела (предельного значения), это не значит, что какой-то член последовательности будет равен этому предельному значению. Он может лишь только стремиться к нему.

Из нашего примера это более чем понятно. Сколько бы раз мы не делили единицу на два, мы никогда не получим ноль. Будет лишь число в два раза меньше предыдущего, но никак не ноль!

Предел функции в математике

В математическом анализе безусловно самое важное – это понятие предела функции.

Не углубляясь в теорию, скажем следующее: предельное значение функции не всегда может принадлежать области значений самой функции.

При изменении аргумента, функция будет стремиться к какому-то значению, но может его не принять никогда.

Например, гипербола 1/x не имеет значения ноль ни в какой точке, но она неограниченно стремится к нулю при стремлении x к бесконечности.

Калькулятор пределов

Нашей целью не является дать вам какие-то теоретические знания, для этого есть куча умных толстых книжек.

Но мы предлагаем вам воспользоваться онлайн калькулятором пределов, с помощью которого сможете сравнить ваше решение с правильным ответом.

Помимо всего, калькулятор выдает пошаговое решение пределов, применяя зачастую правило Лопиталя с использованием дифференцирования числителя и знаменателя непрерывной в точке или на некотором отрезке функции.

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является matematikam.ru.

Что такое предел? Понятие предела

Все без исключения где-то в глубине души понимают, что такое предел, но как только слышат «предел функции» или «предел последовательности», то возникает легкая растерянность.

Не бойтесь, это всего лишь от незнаний! Через 3 минуты прочтения ниженаписанного, вы станете грамотнее.

Важно раз и навсегда понять, что имеют в виду, когда говорят о каких-то предельных положениях, значениях, ситуациях и вообще, когда по жизни прибегают к термину предела.

Взрослые люди это понимает интуитивно, а мы разберем на нескольких примерах.

Пример первый

Вспомним строки из песни группы «Чайф»: «… не доводи до предела, до предела не доводи …».

Пример второй

Наверняка вы слышали фразу о предельно устойчивом положении предмета в пространстве.

Вы сами можете без труда смоделировать такую ситуацию с подручными вещами.

Например, слегка наклоните пластиковую бутылку и отпустите её. Она обратно встанет на днище.

Но есть такие предельные наклонные положения, за границами которых она просто упадет.

Опять же предельное положение в данном случае - это нечто конкретное. Важно это понимать.

Можно много приводить примеров использования термина предела: предел человеческих возможностей, предел прочности материала и так далее.

Ну а с беспределами так вообще каждый день сталкиваемся)))

Но сейчас нас интересуют предел последовательности и предел функции в математике.

Предел числовой последовательности в математике

Предел (числовой последовательности) - одно из основных понятий математического анализа. На понятии предельного перехода базируются сотни и сотни теорем, определяющие современную науку.

Сразу конкретный пример для наглядности.

Допустим есть бесконечная последовательность чисел, каждое из которых в два раза меньше предыдущего, начиная с единицы: 1, ½, ¼, ...

Так вот предел числовой последовательности (если он существует) – это какое-то конкретное значение.

В процессе деления пополам каждое последующее значение последовательности неограниченно приближается к определенному числу.

Несложно догадаться, что это будет ноль.

Важно!

Когда мы говорим о существовании предела (предельного значения), это не значит, что какой-то член последовательности будет равен этому предельному значению. Он может лишь только стремиться к нему.

Из нашего примера это более чем понятно. Сколько бы раз мы не делили единицу на два, мы никогда не получим ноль. Будет лишь число в два раза меньше предыдущего, но никак не ноль!

Предел функции в математике

В математическом анализе безусловно самое важное – это понятие предела функции.

Не углубляясь в теорию, скажем следующее: предельное значение функции не всегда может принадлежать области значений самой функции.

При изменении аргумента, функция будет стремиться к какому-то значению, но может его не принять никогда.

Например, гипербола 1/x не имеет значения ноль ни в какой точке, но она неограниченно стремится к нулю при стремлении x к бесконечности.

Калькулятор пределов

Нашей целью не является дать вам какие-то теоретические знания, для этого есть куча умных толстых книжек.

Но мы предлагаем вам воспользоваться онлайн калькулятором пределов, с помощью которого сможете сравнить ваше решение с правильным ответом.

Помимо всего, калькулятор выдает пошаговое решение пределов, применяя зачастую правило Лопиталя с использованием дифференцирования числителя и знаменателя непрерывной в точке или на некотором отрезке функции.