Kx b что такое b. Функция прямой. Свойства линейной функции

Линейная функция – это функция вида

x-аргумент (независимая переменная),

y- функция (зависимая переменная),

k и b- некоторые постоянные числа

Графиком линейной функции является прямая .

Для построения графика достаточно двух точек, т.к. через две точки можно провести прямую и притом только одну.

Если k˃0, то график расположен в 1-й и 3-й координатных четвертях. Если k˂0, то график расположен в 2-й и 4-й координатных четвертях.

Число k называют угловым коэффициентом прямой графика функции y(x)=kx+b. Если k˃0, то угол наклона прямой y(x)= kx+b к положительному направлению Ох - острый; если k˂0, то этот угол- тупой.

Коэффициент b показывает точку пересечения графика с осью ОУ (0; b).

y(x)=k∙x-- частный случай типичной функции носит название прямая пропорциональность. Графиком является прямая, проходящая через начало координат, поэтому для построения этого графика достаточно одной точки.

График линейной функции

Где коэффициент k = 3, следовательно

График функции будет возрастать и иметь острый угол с осью Ох т.к. коэффициент k имеет знак плюс.

ООФ линейной функции

ОЗФ линейной функции

Кроме случая, где

Так же линейная функция вида

Является функцией общего вида.

Б) Если k=0; b≠0,

В этом случае графиком является прямая параллельная оси Ох и проходящая через точку (0;b).

В) Если k≠0; b≠0, то линейная функция имеет вид y(x)=k∙x+b.

Пример 1 . Построить график функции y(x)= -2x+5

Пример 2 . Найдём нули функции у=3х+1, у=0;

– нули функции.

Ответ: или (;0)

Пример 3 . Определить значение функции y=-x+3 для x=1 и x=-1

y(-1)=-(-1)+3=1+3=4

Ответ: y_1=2; y_2=4.

Пример 4 . Определить координаты их точки пересечения или доказать, что графики не пересекаются. Пусть даны функции y 1 =10∙x-8 и y 2 =-3∙x+5.

Если графики функций пересекаются, то значение функций в этой точке равны

Подставим х=1, то y 1 (1)=10∙1-8=2.

Замечание. Подставить полученное значение аргумента можно и в функцию y 2 =-3∙x+5, тогда получим тот же самый ответ y 2 (1)=-3∙1+5=2.

y=2- ордината точки пересечения.

(1;2)- точка пересечения графиков функций у=10х-8 и у=-3х+5.

Ответ: (1;2)

Пример 5 .

Построить графики функций y 1 (x)= x+3 и y 2 (x)= x-1.

Можно заметить, что коэффициент k=1 для обеих функций.

Из выше сказанного следует, что если коэффициенты линейной функции равны, то их графики в системе координат расположены параллельно.

Пример 6 .

Построим два графика функции.

Первый график имеет формулу

Второй график имеет формулу

В данном случае перед нами график двух прямых, пересекающихся в точке (0;4). Это значит, что коэффициент b, отвечающий за высоту подъёма графика над осью Ох, если х=0. Значит мы может полагать, что коэффициент bу обоих графиков равен 4.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

Линейная функция y = kx + m , когда m = 0 принимает вид y = kx . В таком случае можно заметить, что:

  1. Если x = 0, то и y = 0. Следовательно, график линейной функции y = kx проходит через начало координат не зависимо от значения k .
  2. Если x = 1, то y = k .

Рассмотрим различные значения k , и как от этого меняется y .

Если k положительно (k > 0), то прямая (график функции), проходя через начало координат, будет лежать в I и III координатных четвертях. Ведь при положительном k , когда x положителен, то y также будет положителен. А когда x отрицателен, y также будет отрицательным. Например, для функции y = 2x , если x = 0.5, то y = 1; если же x = –0.5, то y = –1.

Теперь при условии положительного k рассмотрим три разных линейных уравнения. Пусть это будут: y = 0.5x и y = 2x и y = 3x . Как меняется значение y при одном и том же x ? Очевидно оно возрастает вместе с k : чем больше k , тем больше y . А это значит, прямая (график функции) при большем значении k будет иметь больший угол между осью x (осью абсцисс) и графиком функции. Таким образом от k зависит, под каким углом пересекает прямая ось x , и отсюда о k говорят как об угловом коэффициенте линейной функции .

Теперь изучим ситуацию, когда k x положителен, то y будет отрицателен; и наоборот: если x y > 0. Таким образом график функции y = kx при при k

Допустим, имеются линейные уравнения y = –0.5x, y = –2x, y = –3x . При x = 1 получим y = –0.5, y = –2, y = –3. При x = 2 получим y = –1, y = –2, y = –6. Таким образом, чем больше k, тем больше y, если x положительно.

Однако если x = –1, то y = 0.5, y = 2, y = 3. При x = –2 получим y = 1, y = 4, y = 6. Тут с уменьшением значения k возрастает y при x

График функции при k

Графики функций типа y = kx + m отличаются от графиков y = km лишь параллельным смещением.

В 7-м классе мы изучали функции у = С, у = kx, у = kx + m, у = х 2 и пришли в итоге к выводу о том, что уравнение с двумя переменными вида у = f(x) (функция) есть математическая модель, удобная для того, чтобы, задав конкретное значение независимой переменной х (аргумента), вычислить соот-

ветствующее значение зависимой переменной у. Например, если дана функция у = х 2 , т.е. f(x) = х 2 , то при х = 1 получаем у = 1 2 = 1; короче это записывают так: f(1) = 1. При х = 2 получаем f(2)= 2 2 = 4, т. е. у = 4; при х = - 3 получаем f(- 3) = (- З) 2 = 9, т. е. у = 9, и т. д.

Уже в 7-м классе мы с вами начали понимать, что в равенстве у = f(х) правая часть, т.е. выражение f(x), не исчерпывается перечисленными выше четырьмя случаями (С, kx, kx + m, х 2).
Так например, нам уже встречались кусочные функции, т. е. функции, заданные разными формулами на разных промежутках. Вот одна из таких функций:

у = f(x), где

Помните, как строить графики таких функций? Сначала надо построить параболу у = х 2 и взять ее часть при х < 0 (левая ветвь параболы, рис. 1), затем надо построить прямую у = 2х и взять ее часть при х > 0 (рис. 2). И, наконец, надо обе выделенные части объединить на одном рисунке, т. е. построить на одной координатной плоскости (см. рис. 3).


Теперь наша задача состоит в следующем: пополнить запас изученных функций. В реальной жизни встречаются процессы, описываемые различными математическими моделями вида у = f(x), не только теми, что мы перечислили выше. В этом параграфе мы рассмотрим функцию у = kx 2 , где коэффициент k — любое отличное от нуля число.


На самом деле функция у = kx 2 в одном случае вам немного знакома. Смотрите: если k = 1, то получаем у = х 2 ; эту функцию вы изучили в 7-м классе и, наверное, помните, что ее графиком является парабола (рис. 1). Обсудим, что происходит при других значениях коэффициента k.
Рассмотрим две функции: у = 2х 2 и у = 0,5x 2 . Составим таблицу значений для первой функции у = 2х 2:

Построим точки (0; 0), (1; 2), (-1; 2), (2; 8), (-2; 8), (1,5; 4,5), (-1,5; 4,5) на координатной плоскости (рис. 4); они намечают некоторую линию, проведем ее

(рис. 5).
Составим таблицу значений для второй функции у = 0,5x 2:

Построим точки (0; 0), (1; 0,5), (-1; 0,5), (2; 2), (-2; 2), C; 4,5), (-3; 4,5) на координатной плоскости (рис. 6); они намечают некоторую линию, проведем ее (рис. 7)

.

Точки, изображенные на рис. 4 и 6, называют иногда контрольными точками для графика соответствующей функции.

Сравните рисунки 1, 5 и 7. Не правда ли, проведенные линии похожи? Каждую из них называют параболой; при этом точку (0; 0) называют вершиной параболы, а ось у — осью симметрии параболы. От величины коэффициента k зависит «скорость устремления» ветвей параболы вверх или, как еще говорят,
«степень крутизны» параболы. Это хорошо видно на рис. 8, где все три построенные выше параболы расположены на одной координатной плоскости.

Точно так же обстоит дело с любой другой функцией вида у = kx 2 , где k > 0. Графиком ее является парабола с вершиной в начале координат, ветви параболы направлены вверх, причем тем круче, чем больше коэффициент k. Ось у является осью симметрии параболы. Кстати, ради краткости речи математики часто вместо длинной фразы «парабола, служащая графиком функции у = kx 2 », говорят «парабола у = кх 2 », а вместо термина «ось симметрии параболы» используют термин «ось параболы».

Вы замечаете, что имеется аналогия с функцией у = kx? Если k > 0, то графиком функции у = kx является прямая, проходящая через начало координат (помните, мы говорили коротко:прямая у = kx), причем и здесь от величины коэффициента k зависит «степень крутизны» прямой. Это хорошо видно на
рис. 9, где в одной системе координат изображены графики линейных функций у = kx при трех значениях коэффициента


Вернемся к функции у = kx 2 . Выясним, как обстоит дело в случае отрицательного коэффициента ft. Построим, например, график функции

у = - х 2 (здесь k = - 1). Составим таблицу значении:

Отметим точки (0; 0), (1; -1), (-1; -1), (2; -4), (-2; -4), (3; -9), (- 3; - 9) на координатной плоскости (рис. 10); они намечают некоторую линию, проведем ее (рис. 11). Это — парабола с вершиной в точке (0; 0), ось у — ось симметрии, но в отличие от случая, когда k > 0, на этот раз ветви параболы направлены вниз. Аналогично обстоит дело и для других отрицательных значений коэффициента k.


Итак, графиком функции является парабола с вершиной в начале координат; ось у является осью параболы; ветви параболы направлены вверх приk>0 u вниз при k<0.

Отметим еще, что парабола у = kx 2 касается оси х в точке (0; 0), т. е. одна ветвь параболы плавно переходит в другую, как бы прижимаясь к оси х.
Если построить в одной системе координат графики функций у = х 2 и у = - х2, то нетрудно заметить, что эти параболы симметричны друг другу относительно оси х, что хорошо видно на рис. 12. Точно так же симметричны друг другу относительно оси х параболы у = 2х 2 и у = - 2х 2 (не поленитесь, постройте эти
две параболы в одной системе координат и убедитесь в справедливости сделанного утверждения).

Вообще, график функции у = - f(x) симметричен графику функции у = f(x) относительно оси абсцисс.

Свойства функции у = kx 2 при k > 0

Описывая свойства этой функции, мы будем опираться на ее геометрическую модель — параболу (рис. 13).

1. Так как для любого значения х по формуле у = kx 2 можно вычислить соответствующее значение у, то функция определена в любой точке х (при любом значении аргумента х). Короче это записывают так: область определения функции есть (-оо, +оо), т. е. вся координатная прямая.


2. у = 0 при х = 0; у > О при . Это видно и по графику функции (он весь расположен выше оси х), но можно обосновать и без помощи графика: если

То kx 2 > О как произведение двух положительных чисел k и х 2 .

3. у = kx 2 — непрерывная функция. Напомним, что этот термин мы рассматриваем пока как синоним предложения «график функции есть сплошная линия, которую можно начертить, не отрывая карандаша от бумаги». В старших классах будет дано более точное математическое истолкование понятия непрерывности функции, не опирающееся на геометрическую иллюстрацию.

4.y/ наим = 0 (достигается при х = 0); у наи6 не существует.

Напомним, что {/наим — это наименьшее значение функции, а Унаиб. — наибольшее значение функции на заданном промежутке; если промежуток не указан, то унаим- и у наиб, — соответственно наименьшее и наибольшее значения функции в области определения.

5. Функция у = kx 2 возрастает при х > О и убывает при х < 0.

Напомним, что в курсе алгебры 7-го класса мы договорились называть функцию, график которой на рассматриваемом промежутке идет слева направо как бы «в горку», возрастающей, а функцию, график которой на рассматриваемом промежутке идет слева направо как бы «под горку», — убывающей. Более точно можно сказать так: функцию у = f (x) называют возрастающей на промежутке X, если на этом промежутке большему значению аргумента соответствует
большее значение функции; функцию у = f (x) называют убывающей на промежутке X, если на этом промежутке большему значению аргумента соответствует меньшее значение функции.

В учебнике «Алгебра—7» процесс перечисления свойств функции мы называли чтением графика. Процесс чтения графика будет у нас постепенно становиться все насыщеннее и интереснее — по мере изучения новых свойств функций. Те пять свойств, которые перечислены выше, мы обсуждали в 7-м классе для изученных там функций. Добавим одно новое свойство.

Функцию у = f(x) называют ограниченной снизу, если все значения функции больше некоторого числа. Геометрически это означает, что график функции расположен выше некоторой прямой, параллельной оси х.

А теперь посмотрите: график функции у = kx 2 расположен выше прямой у = - 1 (или у = - 2, это неважно) — она проведена на рис. 13. Значит, у — kx2 (k > 0) — ограниченная снизу функция.

Наряду с функциями, ограниченными снизу, рассматривают и функции, ограниченные сверху. Функцию у — f(x) называют ограниченной сверху, если все значения функции меньше некоторого числа. Геометрически это означает, что график функции расположен ниже некоторой прямой, параллельной оси х.
Имеется ли такая прямая для параболы у = kx 2 , где k > 0? Нет. Это значит, что функция не является ограниченной сверху.

Итак, мы получили еще одно свойство, добавим его к тем пяти, что указаны выше.

6. Функция у = kx 2 (k > 0) ограничена снизу и не ограничена сверху.

Свойства функции у = kx 2 при k < 0

При описании свойств этой функции мы опираемся на ее геометрическую модель — параболу (рис. 14).

1.Область определения функции — (—оо, +оо).

2. у = 0 при х = 0; у < 0 при .

З.у = kx 2 — непрерывная функция.
4. у наи6 = 0 (достигается при х = 0), унаим не существует.

5. Функция возрастает при х < 0, убывает при х > 0.

6.Функция ограничена сверху и не ограничена снизу.

Дадим пояснения последнему свойству: имеется прямая, параллельная оси х (например, у = 1, она проведена на рис. 14), такая, что вся парабола лежит ниже этой прямой; это значит, что функция ограничена сверху. С другой стороны, нельзя провести такую прямую, параллельную оси х, чтобы вся парабола была расположена выше этой прямой; это значит, что функция не ограничена снизу.

Использованный выше порядок ходов при перечислении свойств функции не является законом, пока он сложился хронологически именно таким.

Более-менее определенный порядок ходов мы выработаем постепенно и унифицируем в курсе алгебры 9-го класса.

Пример 1. Найти наименьшее и наибольшее значения функции у = 2х 2 на отрезке: а) ; б) [- 2, - 1]; в) [- 1, 1,5].

Решение.
а) Построим график функции у = 2х 2 и выделим его часть на отрезке (рис. 15). Замечаем, что 1/наим. = 0 (достигается при х = 0), а у наиб = 8 (достигается при х = 2).

б) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 2, - 1] (рис. 16). Замечаем, что 2/наим = 2 (достигается при х = - 1), а y наиб = 8 (достигается при х = - 2).

в) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 1, 1,5] (рис. 17). Замечаем, что унанм = 0 (достигается при х = 0), а y наиб достигается в точке х = 1,5; подсчитаем это значение:(1,5) = 2-1,5 2 = 2- 2,25 = 4,5. Итак, y наиб =4,5.


Пример 2. Решить уравнение - х 2 = 2х - 3.

Решение. В учебнике «Алгебра—7» мы выработали алгоритм графического решения уравнений, напомним его.

Чтобы графически решить уравнение f(x) = g (x), нужно:

1) рассмотреть две функции у = -x 2 и у = 2x -3;
2) построить график функции i/ = / (х) ;
3) построить график функции у = g (x);
4) найти точки пересечения построенных графиков; абсцис-
сы этих точек — корни уравнения f(x) = g (x).
Применим этот алгоритм к заданному уравнению.
1) Рассмотрим две функции: у = - х2 и у = 2х - 3.
2) Построим параболу — график функции у = - х 2 (рис. 18).

3) Построим график функции у = 2х - 3. Это — прямая, для ее построения достаточно найти любые две точки графика. Если х = 0, то у = - 3; если х = 1,

то у = -1. Итак, нашли две точки (0; -3) и (1; -1). Прямая, проходящая через эти две точки (график функции у = 2х - 3), изображена на том же

чертеже (см. рис. 18).

4) По чертежу находим, что прямая и парабола пересекаются в двух точках А(1; -1) и Б(-3; -9). Значит, данное уравнение имеет два корня: 1 и - 3 — это абсциссы точек А и В.

Ответ: 1,-3.


Замечание. Разумеется, нельзя слепо доверять графическим иллюстрациям. Может быть, нам только кажется, что точка А имеет координаты (1; — 1), а на
самом деле они другие, например (0,98; - 1,01)?

Поэтому всегда полезно проверить себя. Так, в рассмотренном примере надо убедиться, что точка А(1; —1) принадлежит параболе у = — х 2 (это легко — достаточно подставить в формулу у = — х 2 координаты точки А; получим - 1 = - 1 2 — верное числовое равенство) и прямой у = 2х - 3 (и это легко — достаточно подставить в формулу у = 2х - 3 координаты точки А; получим - 1 =2-3 — верное числовое равенство). То же самое надо сделать и для
точки 8. Эта проверка показывает, что в рассмотренном уравнении графические наблюдения привели к верному результату.

Пример 3. Решить систему уравнений

Решение. Преобразуем первое уравнение системы к виду у = - х 2 . Графиком этой функции является парабола, изображенная на рис. 18.
Преобразуем второе уравнение системы к виду у = 2х - 3. Графиком этой функции является прямая, изображенная на рис. 18.

Парабола и прямая пересекаются в точках А(1; -1) и В (- 3; - 9). Координаты этих точек и служат решениями заданной системы уравнений.

Ответ: (1; -1), (-3; -9).

Пример 4. Дана функция у — f (x), где

Требуется:

а) вычислить f(-4), f(-2), f(0), f(1,5), f(2), f(3);

б) построить график функции;

в) с помощью графика перечислить свойства функции.

Решение,

а) Значение х = - 4 удовлетворяет условию —, следовательно, f(-4) надо вычислять по первой строке задания функции.Имеем f(x) = - 0,5x2, значит,
f(-4) = -0,5. (-4) 2 = -8.
Аналогично находим:

f(-2) = -0,5. (-2) 2 =-2;
f(0) = -0,5. 0 2 = 0.

Значение удовлетворяет условию , поэтому надо вычислять по второй строке задания функции. Имеем f(х) = х + 1, значит,

Значение х = 1,5 удовлетворяет условию 1 < х < 2, т. е. f(1,5) надо вычислять по третьей строке задания функции. Имеем f (х) = 2х 2 , значит,
f(1,5) = 2-1,5 2 = 4,5.
Аналогично получим
f(2)= 2. 2 2 =8.
Значение х = 3 не удовлетворяет ни одному из трех условий задания функции, а потому f(3) в данном случае вычислить нельзя, точка х = 3 не принадлежит области определения функции. Задание, состоящее в том, чтобы вычислить f(3), — некорректно.

б) Построение графика осуществим «по кусочкам». Сначала построим параболу у = -0,5x 2 и выделим ее часть на отрезке [-4, 0] (рис. 19). Затем построим прямую у = х + 1 и. выделим ее часть на полуинтервале (0, 1] (рис. 20). Далее построим параболу у = 2х 2 и выделим ее часть на полуинтервале

(1, 2] (рис. 21).

Наконец, все три «кусочка» изобразим в одной системе координат; получим график функции у = f(x) (рис. 22).

в) Перечислим свойства функции или, как мы условились говорить, прочитаем график.

1. Область определения функции — отрезок [—4, 2].

2. у = 0 при х = 0; у > 0 при 0<х<2;у<0 при - 4 < х < 0.

3. Функция претерпевает разрыв при х = 0.

4. Функция возрастает на отрезке [-4, 2].

5. Функция ограничена и снизу и сверху.

6. y наим = -8 (достигается при х = -4); y наи6 . = 8 (достигается при х = 2).

Пример 5. Дана функция у = f(x) , где f(x) = Зх 2 . Найти:

f(1), f(- 2), f(а), f(2а), f(а + 1), f(-х), f(Зх),f(x - 1),
f(x + а), f(x) + 5, f(х) + b, f(x + а) + b, f(x 2), f(2х 3).

Решение. Так как f (х) = Зх 2 , то последовательно получаем:

f(1) =3.1 2 = 3;
f(a) = За 2 ;
f(а+1) = 3(а + 1) 2 ;
f(3х) = 3
.(3х) 2 = 27х 2 ;
f(x + а) = 3(х + а) 2 ;

f(x 2) +b = 3x 2 +b
f(x 2) = 3. (x 2) 2

F(- 2) = З. (-2) 2 = 12
f(2a) =З. (2a) 2 =12a 2

F(x) =З. (-x) 2 =3x 2

F(-x)+ 5 =3x 2 +5
f{x + а) + b = 3 (x + a) 2 + b;
f(2x 3) = 3. (2x 3) 2

Важно!

Функцию вида «y = kx + b » называют линейной функцией.

Буквенные множители «k » и «b » называют числовыми коэффициентами .

Вместо «k » и «b » могут стоять любые числа (положительные, отрицательные или дроби).

Другими словами, можно сказать, что «y = kx + b » — это семейство всевозможных функций, где вместо «k » и «b » стоят числа.

Примеры функций типа «y = kx + b ».

  • y = 5x + 3
  • y = −x + 1
  • y = x − 2 k =
    2
    3
    b = −2 y = 0,5x k = 0,5 b = 0

    Обратите особое внимание на функцию «y = 0,5x » в таблице. Часто совершают ошибку при поиске в ней числового коэффициента «b ».

    Рассматривая функцию «y = 0,5x », неверно утверждать, что числового коэффициента «b » в функции нет.

    Числовый коэффициент «b » присутствет в функции типа «y = kx + b » всегда. В функции «y = 0,5x » числовый коэффициент «b » равен нулю .

    Как построить график линейной функции
    «y = kx + b »

    Запомните!

    Графиком линейной функции «y = kx + b » является прямая .

    Так как графиком функции «y = kx + b » является прямая линия , функцию называют линейной функцией .

    Из геометрии вспомним аксиому (утверждение, которое не требует доказательств), что через любые две точки можно провести прямую и притом только одну.

    Исходя из аксиомы выше следует, что чтобы построить график функции вида
    «у = kx + b » нам достаточно будет найти всего две точки.

    Для примера построим график функции «y = −2x + 1 ».

    Найдем значение функции «y » для двух произвольных значений «x ». Подставим, например, вместо «x » числа «0 » и «1 ».

    Важно!

    Выбирая произвольные числовые значения вместо «x », лучше брать числа «0 » и «1 ». С этими числами легко выполнять расчеты.

    Полученные значения «x » и «y » — это координаты точек графика функции.

    Запишем полученные координаты точек «y = −2x + 1 » в таблицу.

    Отметим полученные точки на системе координат.


    Теперь проведем прямую через отмеченные точки. Эта прямая будет являться графиком функции «y = −2x + 1 ».


    Как решать задачи на
    линейную функцию «y = kx + b »

    Рассмотрим задачу.

    Построить график функции «y = 2x + 3 ». Найти по графику:

    1. значение «y » соответствующее значению «x » равному −1; 2; 3; 5 ;
    2. значение «x », если значение «y » равно 1; 4; 0; −1 .

    Вначале построим график функции «y = 2x + 3 ».

    Используем правила, по которым мы выше. Для построения графика функции «y = 2x + 3 » достаточно найти всего две точки.

    Выберем два произвольных числовых значения для «x ». Для удобства расчетов выберем числа «0 » и «1 ».

    Выполним расчеты и запишем их результаты в таблицу.

    Отметим полученные точки на прямоугольной системе координат.

    Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции «y = 2x + 3 ».

    Теперь работаем с построенным графиком функции «y = 2x + 3 ».

    Требуется найти значение «y », соответствующее значению «x »,
    которое равно −1; 2; 3; 5 .

    • Ox » к нулю (x = 0) ;
    • подставить вместо «x » в формулу функции ноль и найти значение «y »;
    • Oy » .

    Подставим вместо «x » в формулу функции «y = −1,5x + 3 » число ноль.

    Y(0) = −1,5 · 0 + 3 = 3


    (0; 3) — координаты точки пересечения графика функции «y = −1,5x + 3 » c осью «Oy ».

    Запомните!

    Чтобы найти координаты точки пересечения графика функции
    с осью «Ox » (осью абсцисс) нужно:

    • приравнять координату точки по оси «Oy » к нулю (y = 0) ;
    • подставить вместо «y » в формулу функции ноль и найти значение «x »;
    • записать полученные координаты точки пересечения с осью «Oy » .

    Подставим вместо «y » в формулу функции «y = −1,5x + 3 » число ноль.

    0 = −1,5x + 3
    1,5x = 3 | :(1,5)
    x = 3: 1,5
    x = 2


    (2; 0) — координаты точки пересечения графика функции «y = −1,5x + 3 » c осью «Ox ».

    Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните «правило противоположности».

    Важно!

    Если нужно найти координаты точки пересечения графика с осью «Ox » , то приравниваем «y » к нулю.

    И наооборот. Если нужно найти координаты точки пересечениа графика с осью «Oy » , то приравниваем «x » к нулю.

Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).