Метод вариации постоянных для линейных. Решение линейных неоднородных дифференциальных уравнений высших порядков методом лагранжа. Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

Рассмотрим теперь линейное неоднородное уравнение
. (2)
Пусть y 1 ,y 2 ,.., y n - фундаментальная система решений, а - общее решение соответствующего однородного уравнения L(y)=0 . Аналогично случаю уравнений первого порядка, будем искать решение уравнения (2) в виде
. (3)
Убедимся в том, что решение в таком виде существует. Для этого подставим функцию в уравнение. Для подстановки этой функции в уравнение найдём её производные. Первая производная равна
. (4)
При вычислении второй производной в правой части (4) появится четыре слагаемых, при вычислении третьей производной - восемь слагаемых и так далее. Поэтому, для удобства дальнейшего счёта, первое слагаемое в (4) полагают равным нулю. С учётом этого, вторая производная равна
. (5)
По тем же, что и раньше, соображениям, в (5) также полагаем первое слагаемое равным нулю. Наконец, n-я производная равна
. (6)
Подставляя полученные значения производных в исходное уравнение, имеем
. (7)
Второе слагаемое в (7) равно нулю, так как функции y j , j=1,2,..,n, являются решениями соответствующего однородного уравнения L(y)=0. Объединяя с предыдущим, получаем систему алгебраических уравнений для нахождения функций C" j (x)
(8)
Определитель этой системы есть определитель Вронского фундаментальной системы решений y 1 ,y 2 ,..,y n соответствующего однородного уравнения L(y)=0 и поэтому не равен нулю. Следовательно, существует единственное решение системы (8). Найдя его, получим функции C" j (x), j=1,2,…,n, а, следовательно, и C j (x), j=1,2,…,n Подставляя эти значения в (3), получаем решение линейного неоднородного уравнения.
Изложенный метод называется методом вариации произвольной постоянной или методом Лагранжа.

Пример №1 . Найдём общее решение уравнения y"" + 4y" + 3y = 9e -3 x . Рассмотрим соответствующее однородное уравнение y"" + 4y" + 3y = 0. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны -1 и -3. Поэтому фундаментальная система решений однородного уравнения состоит из функций y 1 = e - x и y 2 = e -3 x . Решение неоднородного уравнения ищем в виде y = C 1 (x)e - x + C 2 (x)e -3 x . Для нахождения производных C" 1 , C" 2 составляем систему уравнений (8)
C′ 1 ·e -x +C′ 2 ·e -3x =0
-C′ 1 ·e -x -3C′ 2 ·e -3x =9e -3x
решая которую, находим , Интегрируя полученные функции, имеем
Окончательно получим

Пример №2 . Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами методом вариации произвольных постоянных:

y(0) =1 + 3ln3
y’(0) = 10ln3

Решение:
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -6 r + 8 = 0
D = (-6) 2 - 4·1·8 = 4

Корни характеристического уравнения: r 1 = 4, r 2 = 2
Следовательно, фундаментальную систему решений составляют функции: y 1 =e 4x , y 2 =e 2x
Общее решение однородного уравнения имеет вид: y =C 1 ·e 4x +C 2 ·e 2x
Поиск частного решения методом вариации произвольной постоянной.
Для нахождения производных C" i составляем систему уравнений:
C′ 1 ·e 4x +C′ 2 ·e 2x =0
C′ 1 (4e 4x) + C′ 2 (2e 2x) = 4/(2+e -2x)
Выразим C" 1 из первого уравнения:
C" 1 = -c 2 e -2x
и подставим во второе. В итоге получаем:
C" 1 = 2/(e 2x +2e 4x)
C" 2 = -2e 2x /(e 2x +2e 4x)
Интегрируем полученные функции C" i:
C 1 = 2ln(e -2x +2) - e -2x + C * 1
C 2 = ln(2e 2x +1) – 2x+ C * 2

Поскольку y =C 1 ·e 4x +C 2 ·e 2x , то записываем полученные выражения в виде:
C 1 = (2ln(e -2x +2) - e -2x + C * 1) e 4x = 2 e 4x ln(e -2x +2) - e 2x + C * 1 e 4x
C 2 = (ln(2e 2x +1) – 2x+ C * 2)e 2x = e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
Таким образом, общее решение дифференциального уравнения имеет вид:
y = 2 e 4x ln(e -2x +2) - e 2x + C * 1 e 4x + e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
или
y = 2 e 4x ln(e -2x +2) - e 2x + e 2x ln(2e 2x +1) – 2x e 2x + C * 1 e 4x + C * 2 e 2x

Найдем частное решение при условии:
y(0) =1 + 3ln3
y’(0) = 10ln3

Подставляя x = 0, в найденное уравнение, получим:
y(0) = 2 ln(3) - 1 + ln(3) + C * 1 + C * 2 = 3 ln(3) - 1 + C * 1 + C * 2 = 1 + 3ln3
Находим первую производную от полученного общего решения:
y’ = 2e 2x (2C 1 e 2x + C 2 -2x +4 e 2x ln(e -2x +2)+ ln(2e 2x +1)-2)
Подставляя x = 0, получим:
y’(0) = 2(2C 1 + C 2 +4 ln(3)+ ln(3)-2) = 4C 1 + 2C 2 +10 ln(3) -4 = 10ln3

Получаем систему из двух уравнений:
3 ln(3) - 1 + C * 1 + C * 2 = 1 + 3ln3
4C 1 + 2C 2 +10 ln(3) -4 = 10ln3
или
C * 1 + C * 2 = 2
4C 1 + 2C 2 = 4
или
C * 1 + C * 2 = 2
2C 1 + C 2 = 2
Откуда: C 1 = 0, C * 2 = 2
Частное решение запишется как:
y = 2e 4x ·ln(e -2x +2) - e 2x + e 2x ·ln(2e 2x +1) – 2x·e 2x + 2·e 2x

Метод вариации произвольных постоянных применяется для решения неоднородных дифференциальных уравнений. Данный урок предназначен для тех студентов, кто уже более или менее хорошо ориентируется в теме. Если вы только-только начинаете знакомиться с ДУ, т.е. являетесь чайником, то рекомендую начать с первого урока: Дифференциальные уравнения первого порядка. Примеры решений . А если уже-уже заканчиваете, пожалуйста, отбросьте возможное предвзятое мнение, что метод сложный. Потому что он простой.

В каких случаях применяется метод вариации произвольных постоянных?

1) Метод вариации произвольной постояннОЙ можно использовать при решении линейного неоднородного ДУ 1-го порядка . Коль скоро уравнение первого порядка, то и постоянная (константа) тоже одна.

2) Метод вариации произвольнЫХ постоянных используют для решения некоторых линейных неоднородных уравнений второго порядка . Здесь варьируются две постоянные (константы).

Логично предположить, что урок будет состоять из двух параграфов…. Вот написал это предложение, и минут 10 мучительно думал, какую бы еще умную хрень добавить для плавного перехода к практическим примерам. Но почему-то мыслей после праздников нет никаких, хотя вроде и не злоупотреблял ничем. Поэтому сразу примемся за первый параграф.

Метод вариации произвольной постоянной
для линейного неоднородного уравнения первого порядка

Перед рассмотрением метода вариации произвольной постоянной желательно быть знакомым со статьей Линейные дифференциальные уравнения первого порядка . На том уроке мы отрабатывали первый способ решения неоднородного ДУ 1-го порядка. Этот первый способ решения, напоминаю, называется метод замены или метод Бернулли (не путать с уравнением Бернулли !!!)

Сейчас мы рассмотрим второй способ решения – метод вариации произвольной постоянной. Я приведу всего три примера, причем возьму их из вышеупомянутого урока . Почему так мало? Потому что на самом деле решение вторым способом будет очень похоже на решение первым способом. Кроме того, по моим наблюдениям, метод вариации произвольных постоянных применяется реже метода замены.



Пример 1


(Диффур из Примера №2 урока Линейные неоднородные ДУ 1-го порядка )

Решение: Данное уравнение является линейным неоднородным и имеет знакомый вид:

На первом этапе необходимо решить более простое уравнение:
То есть, тупо обнуляем правую часть – вместо пишем ноль.
Уравнение я буду называть вспомогательным уравнением .

В данном примере нужно решить следующее вспомогательное уравнение:

Перед нами уравнение с разделяющимися переменными , решение которого (надеюсь) уже не представляет для вас сложностей:

Таким образом:
– общее решение вспомогательного уравнения .

На втором шаге заменим константу некоторой пока ещё неизвестной функцией , которая зависит от «икс»:

Отсюда и название метода – варьируем константу . Как вариант, константа может быть некоторой функцией , которую нам предстоит сейчас найти.

В исходном неоднородном уравнении проведём замену:


Подставим и в уравнение :

Контрольный момент – два слагаемых в левой части сокращаются . Если этого не происходит, следует искать ошибку выше.

В результате замены получено уравнение с разделяющимися переменными. Разделяем переменные и интегрируем.

Какая благодать, экспоненты тоже сокращаются:

К найденной функции приплюсовываем «нормальную» константу :

На заключительном этапе вспоминаем про нашу замену:

Функция только что найдена!

Таким образом, общее решение:

Ответ: общее решение:

Если вы распечатаете два способа решения, то легко заметите, что в обоих случаях мы находили одни и те же интегралы. Отличие лишь в алгоритме решения.

Теперь что-нибудь посложнее, второй пример я тоже прокомментирую:

Пример 2

Найти общее решение дифференциального уравнения
(Диффур из Примера №8 урока Линейные неоднородные ДУ 1-го порядка )

Решение: Приведем уравнение к виду :

Обнулим правую часть и решим вспомогательное уравнение:



Общее решение вспомогательного уравнения:

В неоднородном уравнении проведём замену:

По правилу дифференцирования произведения:

Подставим и в исходное неоднородное уравнение :

Два слагаемых в левой части сокращаются, значит, мы на верном пути:

Интегрируем по частям. Вкусная буква из формулы интегрирования по частям у нас уже задействована в решении, поэтому используем, например, буквы «а» и «бэ»:

Теперь вспоминаем проведённую замену:

Ответ: общее решение:

И один пример для самостоятельного решения:

Пример 3

Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию.

,
(Диффур из Примера №4 урока Линейные неоднородные ДУ 1-го порядка )
Решение:
Данное ДУ является линейным неоднородным. Используем метод вариации произвольных постоянных. Решим вспомогательное уравнение:

Разделяем переменные и интегрируем:

Общее решение:
В неоднородном уравнении проведем замену:

Выполним подстановку:

Таким образом, общее решение:

Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Решение в конце урока может служить примерным образцом для чистового оформления задания.

Метод вариации произвольных постоянных
для линейного неоднородного уравнения второго порядка
с постоянными коэффициентами

Часто приходилось слышать мнение, что метод вариации произвольных постоянных для уравнения второго порядка – штука не из легких. Но я предполагаю следующее: скорее всего, метод многим кажется трудным, поскольку встречается не так часто. А в действительности особых сложностей нет – ход решения чёткий, прозрачный, понятный. И красивый.

Для освоения метода желательно уметь решать неоднородные уравнения второго порядка способом подбора частного решения по виду правой части. Данный способ подробно рассмотрен в статье Неоднородные ДУ 2-го порядка . Вспоминаем, что линейное неоднородное уравнение второго порядка с постоянными коэффициентами имеет вид:

Метод подбора, который рассматривался на вышеупомянутом уроке, проходит лишь в ограниченном ряде случаев, когда в правой части находятся многочлены, экспоненты, синусы, косинусы. Но что делать, когда справа, например, дробь, логарифм, тангенс? В такой ситуации на помощь как раз и приходит метод вариации постоянных.

Пример 4

Найти общее решение дифференциального уравнения второго порядка

Решение: В правой части данного уравнения находится дробь, поэтому сразу можно сказать, что метод подбора частного решения не прокатывает. Используем метод вариации произвольных постоянных.

Ничто не предвещает грозы, начало решения совершенно обычное:

Найдем общее решение соответствующего однородного уравнения:

Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни, поэтому общее решение:

Обратите внимание на запись общего решения – если есть скобки, то их раскрываем.

Теперь проделываем практически тот же трюк, что и для уравнения первого порядка: варьируем константы , заменяя их неизвестными функциями . То есть, общее решение неоднородного уравнения будем искать в виде:

Где – пока ещё неизвестные функции.

Похоже на свалку бытовых отходов, но сейчас всё рассортируем.

В качестве неизвестных выступают производные функций . Наша цель – найти производные , причем найденные производные должны удовлетворять и первому и второму уравнению системы.

Откуда берутся «игреки»? Их приносит аист. Смотрим на полученное ранее общее решение и записываем:

Найдем производные:

С левыми частями разобрались. Что справа?

– это правая часть исходного уравнения, в данном случае:

Коэффициент – это коэффициент при второй производной:

На практике почти всегда , и наш пример не исключение.

Всё прояснилось, теперь можно составить систему:

Систему обычно решают по формулам Крамера , используя стандартный алгоритм. Единственное отличие состоит в том, что вместо чисел у нас функции.

Найдем главный определитель системы:

Если позабылось, как раскрывается определитель «два на два», обратитесь к уроку Как вычислить определитель? Ссылка ведёт на доску позора =)

Итак: , значит, система имеет единственное решение.

Находим производную:

Но это еще не всё, пока мы нашли только производную.
Сама функция восстанавливается интегрированием:

Разбираемся со второй функцией:


Здесь добавляем «нормальную» константу

На заключительном этапе решения вспоминаем, в каком виде мы искали общее решение неоднородного уравнения? В таком:

Нужные функции только что найдены!

Осталось выполнить подстановку и записать ответ:

Ответ: общее решение:

В принципе, в ответе можно было раскрыть скобки.

Полная проверка ответа выполняется по стандартной схеме, которая рассматривалась на уроке Неоднородные ДУ 2-го порядка . Но проверка будет непростой, поскольку предстоит находить достаточно тяжелые производные и проводить громоздкую подстановку. Это неприятная особенность, когда вы решаете подобные диффуры.

Пример 5

Решить дифференциальное уравнение методом вариации произвольных постоянных

Это пример для самостоятельного решения. На самом деле в правой части тоже дробь. Вспоминаем тригонометрическую формулу , её, к слову, нужно будет применить по ходу решения.

Метод вариации произвольных постоянных – наиболее универсальный метод. Им можно решить любое уравнение, которое решается методом подбора частного решения по виду правой части . Возникает вопрос, а почему бы и там не использовать метод вариации произвольных постоянных? Ответ очевиден: подбор частного решения, который рассматривался на уроке Неоднородные уравнения второго порядка , значительно ускоряет решение и сокращает запись – никакого трахча с определителями и интегралами.

Рассмотрим два примера с задачей Коши .

Пример 6

Найти частное решение дифференциального уравнения, соответствующее заданным начальным условиям

,

Решение: Опять дробь и экспонента в интересном месте.
Используем метод вариации произвольных постоянных.

Найдем общее решение соответствующего однородного уравнения:



– получены различные действительные корни, поэтому общее решение:

Общее решение неоднородного уравнения ищем в виде: , где – пока ещё неизвестные функции.

Составим систему:

В данном случае:
,
Находим производные:
,


Таким образом:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Восстанавливаем функцию интегрированием:

Здесь использован метод подведения функции под знак дифференциала .

Восстанавливаем вторую функцию интегрированием:

Такой интеграл решается методом замены переменной :

Из самой замены выражаем:

Таким образом:

Данный интеграл можно найти методом выделения полного квадрата , но в примерах с диффурами я предпочитаю раскладывать дробь методом неопределенных коэффициентов :

Обе функции найдены:

В результате, общее решение неоднородного уравнения:

Найдем частное решение, удовлетворяющее начальным условиям .

Технически поиск решения осуществляется стандартным способом, который рассматривался в статье Неоднородные дифференциальные уравнения второго порядка .

Держитесь, сейчас будем находить производную от найденного общего решения:

Вот такое вот безобразие. Упрощать его не обязательно, легче сразу составить систему уравнений. В соответствии с начальными условиями :

Подставим найденные значения констант в общее решение:

В ответе логарифмы можно немного запаковать.

Ответ: частное решение:

Как видите, трудности могут возникнуть в интегралах и производных, но никак не в самом алгоритме метода вариации произвольных постоянных. Это не я вас запугал, это всё сборник Кузнецова!

Для расслабления заключительный, более простой пример для самостоятельного решения:

Пример 7

Решить задачу Коши

,

Пример несложный, но творческий, когда составите систему, внимательно на неё посмотрите, прежде чем решать;-),




В результате общее решение:

Найдем частное решение, соответствующее начальным условиям .



Подставим найденные значения констант в общее решение:

Ответ: частное решение:

Теоретический минимум

В теории дифференциальных уравнений существует метод, претендующий на достаточно высокую для этой теории степень универсальности.
Речь идёт о методе вариации произвольной постоянной, применимом к решению различных классов дифференциальных уравнений и их
систем. Это именно тот случай, когда теория - если вывести за скобки доказательства утверждений - минимальна, но позволяет добиваться
значительных результатов, поэтому основной акцент будет сделан на примерах.

Общую идею метода сформулировать довольно просто. Пусть заданное уравнение (систему уравнений) решить сложно или вообще непонятно,
как его решать. Однако видно, что при исключении из уравнения некоторых слагаемых оно решается. Тогда решают именно такое упрощённое
уравнение (систему), получают решение, содержащее некоторое количество произвольных констант - в зависимости от порядка уравнения (количества
уравнений в системе). Затем полагают, что константы в найденном решении в действительности константами не являются, найденное решение
подставляется в исходное уравнение (систему), получается дифференциальное уравнение (или система уравнений) для определения "констант".
Существует определённая специфика в применении метода вариации произвольной постоянной к разным задачам, но это уже частности, которые будут
продемонстрированы на примерах.

Отдельно рассмотрим решение линейных неоднородных уравнений высших порядков, т.е. уравнений вида
.
Общее решение линейного неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и частного решения
данного уравнения. Предположим, что общее решение однородного уравнения уже найдено, а именно построена фундаментальная система решений (ФСР)
. Тогда общее решение однородного уравнения равно .
Нужно найти любое частное решение неоднородного уравнения. Для этого константы считаются зависящими от переменной .
Далее нужно решить систему уравнений
.
Теория гарантирует, что у этой системы алгебраических уравнений относительно производных от функций есть единственное решение.
При нахождении самих функций константы интегрирования не появляются: ищется ведь любое одно решение.

В случае решения систем линейных неоднородных уравнений первого порядка вида

алгоритм почти не меняется. Сначала нужно найти ФСР соответствующей однородной системы уравнений, составить фундаментальную матрицу
системы , столбцы которой представляют собой элементы ФСР. Далее составляется уравнение
.
Решая систему, определяем функции , находя таким образом, частное решение исходной системы
(фундаментальная матрица умножается на столбец найденных функций ).
Прибавляем его к общему решению соответствующей системы однородных уравнений, которое строится на основе уже найденной ФСР.
Получается общее решение исходной системы.

Примеры.

Пример 1. Линейные неоднородные уравнения первого порядка .

Рассмотрим соответствующее однородное уравнение (искомую функцию обозначим ):
.
Это уравнение легко решается методом разделения переменных:

.
А теперь представим решение исходного уравнения в виде , где функцию ещё предстоит найти.
Подставляем такой вид решения в исходное уравнение:
.
Как видно, второе и третье слагаемое в левой части взаимно уничтожаются - это характерная черта метода вариации произвольной постоянной.

Вот здесь уже - действительно, произвольная постоянная. Таким образом,
.

Пример 2. Уравнение Бернулли .

Действуем аналогично первому примеру - решаем уравнение

методом разделения переменных. Получится , поэтому решение исходного уравнения ищем в виде
.
Подставляем эту функцию в исходное уравнение:
.
И снова происходят сокращения:
.
Здесь нужно не забыть удостовериться, что при делении на не теряется решение. А случаю отвечает решение исходного
уравнения . Запомним его. Итак,
.
Запишем .
Это и есть решение. При записи ответа следует также указать найденное ранее решение , так как ему не соответствует никакое конечное значение
константы .

Пример 3. Линейные неоднородные уравнения высших порядков .

Сразу заметим, что это уравнение можно решить и проще, но на нём удобно показать метод. Хотя некоторые преимущества
у метода вариации произвольной постоянной и в этом примере есть.
Итак, начинать нужно с ФСР соответствующего однородного уравнения. Напомним, что для нахождения ФСР составляется характеристическое
уравнение
.
Таким образом, общее решение однородного уравнения
.
Входящие сюда константы и предстоит варьировать. Составляем сист

Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.

Линейные дифференциальные уравнения первого порядка - это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.

Метод вариации произвольной постоянной (метод Лагранжа) состоит в следующем:

1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.

2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).

3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).

Рассмотрим примеры на метод вариации произвольной постоянной. Возьмем те же задания, что и в , сравним ход решения и убедимся, что полученные ответы совпадают.

1) y’=3x-y/x

Перепишем уравнение в стандартном виде (в отличие от метода Бернулли, где форма записи нам нужна была только для того, чтобы увидеть, что уравнение — линейное).

y’+y/x=3x (I). Теперь действуем по плану.

1) Решаем однородное уравнение y’+y/x=0. Это уравнение с разделяющимися переменными. Представляем y’=dy/dx, подставляем: dy/dx+y/x=0, dy/dx=-y/x. Обе части уравнения умножаем на dx и делим на xy≠0: dy/y=-dx/x. Интегрируем:

2) В полученном общем решении однородного уравнения будем считать С не константой, а функцией от x: С=С(x). Отсюда

Полученные выражения подставляем в условие (I):

Интегрируем обе части уравнения:

здесь С — уже некоторая новая константа.

3) В общее решение однородного уравнения y=C/x, где мы считали С=С(x), то есть y=C(x)/x, вместо С(x) подставляем найденное выражение x³+C: y=(x³+C)/x или y=x²+C/x. Получили такой же ответ, как и при решении методом Бернулли.

Ответ: y=x²+C/x.

2) y’+y=cosx.

Здесь уравнение уже записано в стандартном виде, преобразовывать не надо.

1) Решаем однородное линейное уравнение y’+y=0: dy/dx=-y; dy/y=-dx. Интегрируем:

Чтобы получить более удобную форму записи, экспоненту в степени С примем за новую С:

Это преобразование выполнили, чтобы удобнее было находить производную.

2) В полученном общем решении линейного однородного уравнения считаем С не константой, а функцией от x: С=С(x). При этом условии

Полученные выражения y и y’ подставляем в условие:

Умножим обе части уравнения на

Интегрируем обе части уравнения по формуле интегрирования по частям, получаем:

Здесь С уже не функция, а обычная константа.

3) В общее решение однородного уравнения

подставляем найденную функцию С(x):

Получили такой же ответ, как и при решении методом Бернулли.

Метод вариации произвольной постоянной применим и для решения .

y’x+y=-xy².

Приводим уравнение к стандартному виду: y’+y/x=-y² (II).

1) Решаем однородное уравнение y’+y/x=0. dy/dx=-y/x. Умножаем обе части уравнения на dx и делим на y: dy/y=-dx/x. Теперь интегрируем:

Подставляем полученные выражения в условие (II):

Упрощаем:

Получили уравнение с разделяющимися переменными относительно С и x:

Здесь С — уже обычная константа. В процессе интегрирования писали вместо С(x) просто С, чтобы не перегружать запись. А в конце вернулись к С(x), чтобы не путать С(x) с новой С.

3) В общее решение однородного уравнения y=C(x)/x подставляем найденную функцию С(x):

Получили такой же ответ, что и при решении способом Бернулли.

Примеры для самопроверки:

1. Перепишем уравнение в стандартном виде:y’-2y=x.

1) Решаем однородное уравнение y’-2y=0. y’=dy/dx, отсюда dy/dx=2y, умножаем обе части уравнения на dx, делим на y и интегрируем:

Отсюда находим y:

Выражения для y и y’ подставляем в условие (для краткости будем питать С вместо С(x) и С’ вместо C"(x)):

Для нахождения интеграла в правой части применяем формулу интегрирования по частям:

Теперь подставляем u, du и v в формулу:

Здесь С =const.

3) Теперь подставляем в решение однородного

Метод вариации произвольных постоянных

Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = f (t )

состоит в замене произвольных постоянных c k в общем решении

z (t ) = c 1 z 1 (t ) + c 2 z 2 (t ) + ... + c n z n (t )

соответствующего однородного уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = 0

на вспомогательные функции c k (t ) , производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z 1 ,z 2 ,...,z n , что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам .

Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

состоит в построении частного решения (1) в виде

где Z (t ) - базис решений соответствующего однородного уравнения, записанный в виде матрицы, а векторная функция , заменившая вектор произвольных постоянных, определена соотношением . Искомое частное решение (с нулевыми начальными значениями при t = t 0 имеет вид

Для системы с постоянными коэффициентами последнее выражение упрощается:

Матрица Z (t )Z − 1 (τ) называется матрицей Коши оператора L = A (t ) .