Дискретные двумерные случайные величины. Двумерная случайная величина Двумерные случайные величины онлайн калькулятор

Определение 2.7. это пара случайных чисел (X, Y), или точка на координатной плоскости (рис. 2.11).

Рис. 2.11.

Двумерная случайная величина - это частный случай многомерной случайной величины, или случайного вектора.

Определение 2.8. Случайный вектор - это случайная функция?,(/) с конечным множеством возможных значений аргумента t, значение которой при любом значении t является случайной величиной.

Двумерная случайная величина называется непрерывной, если ее координаты непрерывны, и дискретной, если ее координаты дискретны.

Задать закон распределения двумерных случайных величин - это значит установить соответствие между ее возможными значениями и вероятностью этих значений. По способам задания случайные величины делятся на непрерывные и дискретные, хотя есть общие способы задания закона распределения любой СВ.

Дискретная двумерная случайная величина

Дискретная двумерная случайная величина задается с помощью таблицы распределений (табл. 2.1).

Таблица 2.1

Таблица распределения (совместное распределение) СВ (X , У)

Элементы таблицы определяются формулой

Свойства элементов таблицы распределения:

Распределение по каждой координате называется одномерным или маргинальным:

р 1> = Р(Х = .г,) - маргинальное распределение СВ X ;

р^ 2) = P(Y= у,) - маргинальное распределение СВ У.

Связь совместного распределения СВ X и У, заданного множеством вероятностей [р {) }, i = 1,..., n,j = 1,..., т (таблицей распределения), и маргинального распределения.


Аналогично для СВ Ур- 2) = X р, г

Задача 2.14. Дано:

Непрерывная двумерная случайная величина

/(х, y)dxdy - элемент вероятности для двумерной случайной величины (X, У) - вероятность попадания случайной величины (X, У) в прямоугольник со сторонами cbc, dy при dx, dy -* 0:

f(x, у) - плотность распределения двумерной случайной величины (X, У). Заданием /(х, у) мы даем полную информацию о распределении двумерной случайной величины.

Маргинальные распределения задаются следующим образом: по X - плотностью распределения СВ X/,(х); по Y - плотностью распределения СВ Уf>(y).

Задание закона распределения двумерной случайной величины функцией распределения

Универсальным способом задания закона распределения для дискретной или непрерывной двумерной случайной величины является функция распределения F(x, у).

Определение 2.9. Функция распределения F(x, у) - вероятность совместного появления событий {Ху}, т.е. F(x 0 ,y n) = = Р(Х у), брошенной на координатную плоскость, попасть в бесконечный квадрант с вершиной в точке М(х 0 , у и) (в заштрихованную на рис. 2.12 область).

Рис. 2.12. Иллюстрация функции распределения F(х, у)

Свойства функции F(x, у)

  • 1) 0 1;
  • 2) F(-oo, -оо) = F(x, -оо) = F(-oo, у) = 0; F(оо, оо) = 1;
  • 3) F(x, у) - неубывающая по каждому аргументу;
  • 4) F(x, у) - непрерывна слева и снизу;
  • 5) согласованность распределений:

F(x, X: F(x, оо) = F,(x); F(y, оо) - маргинальное распределение по Y F(оо, у) = F 2 (y). Связь /(х, у) с F(x, у):

Связь совместной плотности с маргинальной. Дана f(x, у). Получим маргинальные плотности распределения f(x),f 2 {y)".


Случай независимых координат двумерной случайной величины

Определение 2.10. СВ X и Yнезависимы (нз), если независимы любые события, связанные с каждой из этих СВ. Из определения нз СВ следует:

  • 1 )Pij = p X) pf
  • 2 )F(x,y) = F l (x)F 2 (y).

Оказывается, что для независимых СВ X и Y выполнено и

3 )f(x,y) = J(x)f,(y).

Докажем, что для независимых СВ X и Y 2) 3). Доказательство, а) Пусть выполнено 2), т.е.

в то же время F(x,y) = f J f(u,v)dudv, откуда и следует 3);

б) пусть теперь выполнено 3), тогда


т.е. верно 2).

Рассмотрим задачи.

Задача 2.15. Распределение задано следующей таблицей:

Строим маргинальные распределения:

Получаем Р(Х = 3, У = 4) = 0,17 * Р(Х = 3)Р(У = 4) = 0,1485 => => СВ X и Узависимы.

Функция распределения:


Задача 2.16. Распределение задано следующей таблицей:

Получаем P tl = 0,2 0,3 = 0,06; Р 12 = 0,2 ? 0,7 = 0,14; P 2l = 0,8 ? 0,3 = = 0,24; Р 22 - 0,8 0,7 = 0,56 => СВ X и Y нз.

Задача 2.17. Дана /(х, у) = 1/я ехр| -0,5(д" + 2ху + 5г/ 2)]. Найти А(х) и /Ау)-

Решение

(досчитайте самостоятельно).

Определение. Если на одном и том же пространстве элементарных событий заданы две случайные величины Х и Y, то говорят, что задана двумерная случайная величина (Х,Y) .

Пример. Станок штампует стальные плитки. Контролируются длина Х и ширина Y . − двумерная СВ.

СВ Х и Y имеют свои функции распределения и прочие характеристики.

Определение. Функцией распределения двумерной случайной величины (Х,Y) называется функция .

Определение. Законом распределения дискретной двумерной случайной величины (Х, Y) называется таблица

Для двумерной дискретной СВ .

Свойства :

2) если , то ; если , то ;

4) − функция распределения Х ;

− функция распределения Y.

Вероятность попадания значений двумерной СВ в прямоугольник:

Определение. Двумерная случайная величина (Х,Y) называется непрерывной , если ее функция распределения непрерывна на и имеет всюду (за исключением, быть может, конечного числа кривых) непрерывную смешанную частную производную 2-го порядка .

Определение. Плотностью совместного распределения вероятностей двумерной непрерывной СВ называется функция .

Тогда, очевидно, .

Пример 1. Двумерная непрерывная СВ задана функцией распределения

Тогда плотность распределения имеет вид

Пример 2. Двумерная непрерывная СВ задана плотностью распределения

Найдем ее функцию распределения:

Свойства :

3) для любой области .

Пусть известна плотность совместного распределения . Тогда плотность распределения каждой из составляющих двумерной СВ находится следующим образом:

Пример 2 (продолжение).

Плотности распределения составляющий двумерной СВ некоторые авторы называют маргинальными плотностями распределения вероятностей.

Условные законы распределения составляющих системы дискретных СВ.

Условная вероятность , где .

Условный закон распределения составляющей Х при :

Х
Р

Аналогично для , где .

Составим условный закон распределения Х при Y= 2.

Тогда условный закон распределения

Х -1
Р

Определение. Условной плотностью распределения составляющей Х при заданном значении Y=y называется .

Аналогично: .

Определение. Условным математическим ожиданием дискретной СВ Y при называется , где − см. выше.

Следовательно, .

Для непрерывной СВ Y .

Очевидно, что является функцией аргумента х . Эта функция называется функцией регрессии Y на Х .

Аналогично определяется функция регрессии Х на Y : .

Теорема 5. (О функции распределения независимых СВ)

СВ Х и Y

Следствие. Непрерывные СВ Х и Y являются независимыми тогда и только тогда, когда .

В примере 1 при . Следовательно, СВ Х и Y независимые.

Числовые характеристики составляющих двумерной случайной величины

Для дискретной СВ:

Для непрерывной СВ: .

Дисперсия и среднее квадратическое отклонение для всех СВ определяются по одним и тем же известным нам формулам:

Определение. Точка называется центром рассеивания двумерной СВ .

Определение.Ковариацией (корреляционным моментом) СВ называется

Для дискретной СВ: .

Для непрерывной СВ: .

Формула для вычисления: .

Для независимых СВ .

Неудобством характеристики является ее размерность (квадрат единицы измерения составляющих). От этого недостатка свободна следующая величина.

Определение. Коэффициентом корреляции СВ Х и Y называется

Для независимых СВ .

Для любой пары СВ . Известно, что тогда и только тогда, когда , где .

Определение. СВ Х и Y называются некоррелированными , если .

Связь между коррелированностью и зависимостью СВ:

− если СВ Х и Y коррелированы, т.е. , то они зависимы; обратное не верно;

− если СВ Х и Y независимы, то ; обратное не верно.

Замечание 1. Если СВ Х и Y распределены по нормальному закону и , то они независимы.

Замечание 2. Практическое значение в качестве меры зависимости оправдано лишь тогда, когда совместное распределение пары нормально или приближенно нормально. Для произвольных СВ Х и Y можно прийти к ошибочному выводу, т.е. может быть даже тогда, когда Х и Y связаны строгой функциональной зависимостью.

Замечание3. В математической статистике корреляцией называют вероятностную (статистическую) зависимость между величинами, не имеющую, вообще говоря, строго функционального характера. Корреляционная зависимость возникает тогда, когда одна из величин зависит не только от данной второй, но и от ряда случайных факторов, или когда среди условий, от которых зависит одна или другая величина, имеются общие для них обеих условия.

Пример 4. Для СВ Х и Y из примера 3 найти .

Решение.

Пример 5. Дана плотность совместного распределения двумерной СВ .

Довольно часто при изучении случайных величин приходится иметь дело с двумя, тремя и даже большим числом случайных величин. Например, двумерной случайной величиной $\left(X,\ Y\right)$ будет описываться точка попадания снаряда, где случайные величины $X,\ Y$ абсцисса и ордината соответственно. Успеваемость наудачу взятого студента в период сессии характеризуется $n$-мерной случайной величиной $\left(X_1,\ X_2,\ \dots ,\ X_n\right)$, где случайные величины $X_1,\ X_2,\ \dots ,\ X_n$ - это оценки, проставленные в зачетной книжке по различным дисциплинам.

Набор $n$ случайных величин $\left(X_1,\ X_2,\ \dots ,\ X_n\right)$ называется случайным вектором . Мы ограничимся рассмотрением случая $\left(X,\ Y\right)$.

Пусть $X$ - дискретная случайная величина с возможными значениями $x_1,x_2,\ \dots ,\ x_n$, а $Y$ - дискретная случайная величина с возможными значениями $y_1,y_2,\ \dots ,\ y_n$.

Тогда дискретная двумерная случайная величина $\left(X,\ Y\right)$ может принимать значения $\left(x_i,\ y_j\right)$ с вероятностями $p_{ij}=P\left(\left(X=x_i\right)\left(Y=y_j\right)\right)=P\left(X=x_i\right)P\left(Y=y_j|X=x_i\right)$. Здесь $P\left(Y=y_j|X=x_i\right)$ - это условная вероятность того, что случайная величина $Y$ примет значение $y_j$ при условии, что случайная величина $X$ приняла значение $x_i$.

Вероятность того, что случайная величина $X$ примет значение $x_i$, равна $p_i=\sum_j{p_{ij}}$. Вероятность того, что случайная величина $Y$ примет значение $y_j$, равна $q_j=\sum_i{p_{ij}}$.

$$P\left(X=x_i|Y=y_j\right)={{P\left(\left(X=x_i\right)\left(Y=y_j\right)\right)}\over {P\left(Y=y_j\right)}}={{p_{ij}}\over {q_j}}.$$

$$P\left(Y=y_j|X=x_i\right)={{P\left(\left(X=x_i\right)\left(Y=y_j\right)\right)}\over {P\left(X=x_i\right)}}={{p_{ij}}\over {p_i}}.$$

Пример 1 . Задано распределение двумерной случайной величины:

$\begin{array}{|c|c|}
\hline
X\backslash Y & 2 & 3 \\
\hline
-1 & 0,15 & 0,25 \\
\hline
0 & 0,28 & 0,13 \\
\hline
1 & 0,09 & 0,1 \\
\hline
\end{array}$

Определим законы распределения случайных величин $X$ и $Y$. Найдем условные распределения случайной величины $X$ при условии $Y=2$ и случайной величины $Y$ при условии $X=0$.

Заполним следующую таблицу:

$\begin{array}{|c|c|}
\hline
X\backslash Y & 2 & 3 & p_i & p_{ij}/q_1 \\
\hline
-1 & 0,15 & 0,25 & 0,4 & 0,29 \\
\hline
0 & 0,28 & 0,13 & 0,41 & 0,54 \\
\hline
1 & 0,09 & 0,1 & 0,19 & 0,17 \\
\hline
q_j & 0,52 & 0,48 & 1 & \\
\hline
p_{ij}/p_2 & 0,68 & 0,32 & & \\
\hline
1 & 0,09 & 0,1 \\
\hline
\end{array}$

Поясним, как заполняется таблица. Значения первых трех столбцов первых четырех строк взяты из условия. Сумму чисел $2$-го и $3$-го столбцов $2$-й ($3$-й) строки укажем в $4$-м столбце $2$-й ($3$-й) строки. Сумму чисел $2$-го и $3$-го столбцов $4$-й строки укажем в $4$-м столбце $4$-й строки.

Сумму чисел $2$-й, $3$-й и $4$-й строк $2$-го ($3$-го) столбца запишем в $5$-й строке $2$-го ($3$-го) столбца. Каждое число $2$-го столбца делим на $q_1=0,52$, результат округляем до двух цифр после запятой и пишем в $5$-м столбце. Числа из $2$-го и $3$-го столбцов $3$-й строки делим на $p_2=0,41$, результат округляем до двух цифр после запятой и пишем в последней строке.

Тогда закон распределения случайной величины $X$ имеет следующий вид.

$\begin{array}{|c|c|}
\hline
X & -1 & 0 & 1 \\
\hline
p_i & 0,4 & 0,41 & 0,19 \\
\hline
\end{array}$

Закон распределения случайной величины $Y$.

$\begin{array}{|c|c|}
\hline
Y & 2 & 3 \\
\hline
q_j & 0,52 & 0,48 \\
\hline
\end{array}$

Условное распределение случайной величины $X$ при условии $Y=2$ имеет следующий вид.

$\begin{array}{|c|c|}
\hline
X & -1 & 0 & 1 \\
\hline
p_{ij}/q_1 & 0,29 & 0,54 & 0,17 \\
\hline
\end{array}$

Условное распределение случайной величины $Y$ при условии $X=0$ имеет следующий вид.

$\begin{array}{|c|c|}
\hline
Y & 2 & 3 \\
\hline
p_{ij}/p_2 & 0,68 & 0,32 \\
\hline
\end{array}$

Пример 2 . Имеем шесть карандашей, среди которых два красных. Раскладываем карандаши в две коробки. В первую кладут $2$ штуки, а во вторую тоже два. $X$ - количество красных карандашей в первой коробке, a $Y$ - во второй. Написать закон распределения системы случайных величин $(X,\ Y)$.

Пусть дискретная случайная величина $X$ - количество красных карандашей в первой коробке, а дискретная случайная величина $Y$ - количество красных карандашей во второй коробке. Возможные значения случайных величин $X,\ Y$ соответственно $X:0,\ 1,\ 2$, $Y:0,\ 1,\ 2$. Тогда дискретная двумерная случайная величина $\left(X,\ Y\right)$ может принимать значения $\left(x,\ y\right)$ с вероятностями $P=P\left(\left(X=x\right)\times \left(Y=y\right)\right)=P\left(X=x\right)\times P\left(Y=y|X=x\right)$, где $P\left(Y=y|X=x\right)$ - условная вероятность того, что случайная величина $Y$ примет значение $y$ при условии, что случайная величина $X$ приняла значение $x$. Изобразим соответствие между значениями $\left(x,\ y\right)$ и вероятностями $P\left(\left(X=x\right)\times \left(Y=y\right)\right)$ в виде следующей таблицы.

$\begin{array}{|c|c|}
\hline
X\backslash Y & 0 & 1 & 2 \\
\hline
0 & {{1}\over {15}} & {{4}\over {15}} & {{1}\over {15}} \\
\hline
1 & {{4}\over {15}} & {{4}\over {15}} & 0 \\
\hline
2 & {{1}\over {15}} & 0 & 0 \\
\hline
\end{array}$

По строкам такой таблицы указываются значения $X$, а по столбцам значения $Y$, тогда вероятности $P\left(\left(X=x\right)\times \left(Y=y\right)\right)$ указываются на пересечении соответствующей строки и столбца. Рассчитаем вероятности, используя классическое определение вероятности и теорему произведения вероятностей зависимых событий.

$$P\left(\left(X=0\right)\left(Y=0\right)\right)={{C^2_4}\over {C^2_6}}\cdot {{C^2_2}\over {C^2_4}}={{6}\over {15}}\cdot {{1}\over {6}}={{1}\over {15}};$$

$$P\left(\left(X=0\right)\left(Y=1\right)\right)={{C^2_4}\over {C^2_6}}\cdot {{C^1_2\cdot C^1_2}\over {C^2_4}}={{6}\over {15}}\cdot {{2\cdot 2}\over {6}}={{4}\over {15}};$$

$$P\left(\left(X=0\right)\left(Y=2\right)\right)={{C^2_4}\over {C^2_6}}\cdot {{C^2_2}\over {C^2_4}}={{6}\over {15}}\cdot {{1}\over {6}}={{1}\over {15}};$$

$$P\left(\left(X=1\right)\left(Y=0\right)\right)={{C^1_2\cdot C^1_4}\over {C^2_6}}\cdot {{C^2_3}\over {C^2_4}}={{2\cdot 4}\over {15}}\cdot {{3}\over {6}}={{4}\over {15}};$$

$$P\left(\left(X=1\right)\left(Y=1\right)\right)={{C^1_2\cdot C^1_4}\over {C^2_6}}\cdot {{C^1_1\cdot C^1_3}\over {C^2_4}}={{2\cdot 4}\over {15}}\cdot {{1\cdot 3}\over {6}}={{4}\over {15}};$$

$$P\left(\left(X=2\right)\left(Y=0\right)\right)={{C^2_2}\over {C^2_6}}\cdot {{C^2_4}\over {C^2_4}}={{1}\over {15}}\cdot 1={{1}\over {15}}.$$

Поскольку в законе распределения (полученной таблице) все множество событий образует полную группу событий, то сумма вероятностей должна быть равна 1. Проверим это:

$$\sum_{i,\ j}{p_{ij}}={{1}\over {15}}+{{4}\over {15}}+{{1}\over {15}}+{{4}\over {15}}+{{4}\over {15}}+{{1}\over {15}}=1.$$

Функция распределения двумерной случайной величины

Функцией распределения двумерной случайной величины $\left(X,\ Y\right)$ называется функция $F\left(x,\ y\right)$, которая для любых действительных чисел $x$ и $y$ равна вероятности совместного выполнения двух событий $\left\{X < x\right\}$ и $\left\{Y < y\right\}$. Таким образом, по определению

$$F\left(x,\ y\right)=P\left\{X < x,\ Y < y\right\}.$$

Для дискретной двумерной случайной величины функция распределения находится путем суммирования всех вероятностей $p_{ij}$, для которых $x_i < x,\ y_j < y$, то есть

$$F\left(x,\ y\right)=\sum_{x_i < x}{\sum_{y_j < y}{p_{ij}}}.$$

Свойства функции распределения двумерной случайной величины.

1 . Функция распределения $F\left(x,\ y\right)$ является ограниченной, то есть $0\le F\left(x,\ y\right)\le 1$.

2 . $F\left(x,\ y\right)$ не убывающая для каждого из своих аргументов при фиксированном другом, то есть $F\left(x_2,\ y\right)\ge F\left(x_1,\ y\right)$ при $x_2>x_1$, $F\left(x,\ y_2\right)\ge F\left(x,\ y_1\right)$ при $y_2>y_1$.

3 . Если хотя бы один из аргументов принимает значение $-\infty $, то функция распределения будет равна нулю, то есть $F\left(-\infty ,\ y\right)=F\left(x,\ -\infty \right),\ F\left(-\infty ,\ -\infty \right)=0$.

4 . Если оба аргумента принимают значение $+\infty $, то функция распределения будет равна $1$, то есть $F\left(+\infty ,\ +\infty \right)=1$.

5 . В том случае, когда ровно один из аргументов принимает значение $+\infty $, функция распределения $F\left(x,\ y\right)$ становится функцией распределения случайной величины, соответствующей другому элементу, то есть $F\left(x,\ +\infty \right)=F_1\left(x\right)=F_X\left(x\right),\ F\left(+\infty ,\ y\right)=F_y\left(y\right)=F_Y\left(y\right)$.

6 . $F\left(x,\ y\right)$ является непрерывной слева для каждого из своих аргументов, то есть

$${\mathop{lim}_{x\to x_0-0} F\left(x,\ y\right)\ }=F\left(x_0,\ y\right),\ {\mathop{lim}_{y\to y_0-0} F\left(x,\ y\right)\ }=F\left(x,\ y_0\right).$$

Пример 3 . Пусть дискретная двумерная случайная величина $\left(X,\ Y\right)$ задана рядом распределения.

$\begin{array}{|c|c|}
\hline
X\backslash Y & 0 & 1 \\
\hline
0 & {{1}\over {6}} & {{2}\over {6}} \\
\hline
1 & {{2}\over {6}} & {{1}\over {6}} \\
\hline
\end{array}$

Тогда функция распределения:

$F(x,y)=\left\{\begin{matrix}
0,\ при\ x\le 0,\ y\le 0 \\
0,\ при\ x\le 0,\ 0 < y\le 1 \\
0,\ при\ x\le 0,\ y>1 \\
0,\ при\ 0 < x\le 1,\ y\le 0 \\
{{1}\over {6}},\ при\ 0 < x\le 1,\ 0 < y\le 1 \\
{{1}\over {6}}+{{2}\over {6}}={{1}\over {2}},\ при\ 0 < x\le 1,\ y>1 \\
0,\ при\ x>1,\ y\le 0 \\
{{1}\over {6}}+{{2}\over {6}}={{1}\over {2}},\ при\ x>1,\ 0 < y\le 1 \\
{{1}\over {6}}+{{2}\over {6}}+{{2}\over {6}}+{{1}\over {6}}=1,\ при\ x>1,\ y>1 \\
\end{matrix}\right.$

Упорядоченная пара (X , Y) случайных величин X и Y называется двумерной случайной величиной, или случайным вектором двумерного пространства. Двумерная случайная величина (X,Y) называется также системой случайных величина X и Y. Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины. Дискретная двумерная случайная величина (X , Y) считается заданной, если известен ее закон распределения:

P(X=x i , Y=y j) = p ij , i=1,2...,n, j=1,2...,m

Назначение сервиса . С помощью сервиса по заданному закону распределения можно найти:

  • ряды распределения X и Y, математическое ожидание M[X], M[Y], дисперсию D[X], D[Y];
  • ковариацию cov(x,y), коэффициент корреляции r x,y , условный ряд распределения X, условное математическое ожидание M;
Кроме этого, дается ответ на вопрос, "зависимы ли случайные величины X и Y ?".

Инструкция . Укажите размерность матрицы распределения вероятностей (количество строк и столбцов) и ее вид. Полученное решение сохраняется в файле Word .

Пример №1 . Двумерная дискретная случайная величина имеет таблицу распределения:

Y/X 1 2 3 4
10 0 0,11 0,12 0,03
20 0 0,13 0,09 0,02
30 0,02 0,11 0,08 0,01
40 0,03 0,11 0,05 q
Найти величину q и коэффициент корреляции этой случайной величины.

Решение. Величину q найдем из условия Σp ij = 1
Σp ij = 0,02 + 0,03 + 0,11 + … + 0,03 + 0,02 + 0,01 + q = 1
0.91+q = 1. Откуда q = 0.09

Пользуясь формулой ∑P(xi ,yj ) = pi (j=1..n), находим ряд распределения X.

Математическое ожидание M[Y] .
M[y] = 1*0.05 + 2*0.46 + 3*0.34 + 4*0.15 = 2.59
Дисперсия D[Y] = 1 2 *0.05 + 2 2 *0.46 + 3 2 *0.34 + 4 2 *0.15 - 2.59 2 = 0.64
Среднее квадратическое отклонение σ(y) = sqrt(D[Y]) = sqrt(0.64) = 0.801

Ковариация cov(X,Y) = M - M[X]·M[Y] = 2·10·0.11 + 3·10·0.12 + 4·10·0.03 + 2·20·0.13 + 3·20·0.09 + 4·20·0.02 + 1·30·0.02 + 2·30·0.11 + 3·30·0.08 + 4·30·0.01 + 1·40·0.03 + 2·40·0.11 + 3·40·0.05 + 4·40·0.09 - 25.2 · 2.59 = -0.068
Коэффициент корреляции r xy = cov(x,y)/σ(x)&sigma(y) = -0.068/(11.531*0.801) = -0.00736

Пример 2 . Данные статистической обработки сведений относительно двух показателей X и Y отражены в корреляционной таблице. Требуется:

  1. написать ряды распределения для X и Y и вычислить для них выборочные средние и выборочные средние квадратические отклонения;
  2. написать условные ряды распределения Y/x и вычислить условные средние Y/x;
  3. изобразить графически зависимость условных средних Y/x от значений X;
  4. рассчитать выборочный коэффициент корреляции Y на X;
  5. написать выборочное уравнение прямой регрессии;
  6. изобразить геометрически данные корреляционной таблицы и построить прямую регрессии.
Решение . Упорядоченная пара (X,Y) случайных величин X и Y называется двумерной случайной величиной, или случайным вектором двумерного пространства. Двумерная случайная величина (X,Y) называется также системой случайных величина X и Y.
Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины.
Дискретная двумерная случайная величина (X,Y) считается заданной, если известен ее закон распределения:
P(X=x i , Y=y j) = p ij , i=1,2...,n, j=1,2..,m
X / Y 20 30 40 50 60
11 2 0 0 0 0
16 4 6 0 0 0
21 0 3 6 2 0
26 0 0 45 8 4
31 0 0 4 6 7
36 0 0 0 0 3
События (X=x i , Y=y j) образуют полную группу событий, поэтому сумма всех вероятностей p ij (i=1,2...,n, j=1,2..,m ), указанных в таблице, равна 1.
1. Зависимость случайных величин X и Y .
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi ,yj ) = pi (j=1..n), находим ряд распределения X. Математическое ожидание M[Y] .
M[y] = (20*6 + 30*9 + 40*55 + 50*16 + 60*14)/100 = 42.3
Дисперсия D[Y] .
D[Y] = (20 2 *6 + 30 2 *9 + 40 2 *55 + 50 2 *16 + 60 2 *14)/100 - 42.3 2 = 99.71
Среднее квадратическое отклонение σ(y) .

Поскольку, P(X=11,Y=20) = 2≠2·6, то случайные величины X и Y зависимы .
2. Условный закон распределения X .
Условный закон распределения X(Y=20) .
P(X=11/Y=20) = 2/6 = 0.33
P(X=16/Y=20) = 4/6 = 0.67
P(X=21/Y=20) = 0/6 = 0
P(X=26/Y=20) = 0/6 = 0
P(X=31/Y=20) = 0/6 = 0
P(X=36/Y=20) = 0/6 = 0
Условное математическое ожидание M = 11*0.33 + 16*0.67 + 21*0 + 26*0 + 31*0 + 36*0 = 14.33
Условная дисперсия D = 11 2 *0.33 + 16 2 *0.67 + 21 2 *0 + 26 2 *0 + 31 2 *0 + 36 2 *0 - 14.33 2 = 5.56
Условный закон распределения X(Y=30) .
P(X=11/Y=30) = 0/9 = 0
P(X=16/Y=30) = 6/9 = 0.67
P(X=21/Y=30) = 3/9 = 0.33
P(X=26/Y=30) = 0/9 = 0
P(X=31/Y=30) = 0/9 = 0
P(X=36/Y=30) = 0/9 = 0
Условное математическое ожидание M = 11*0 + 16*0.67 + 21*0.33 + 26*0 + 31*0 + 36*0 = 17.67
Условная дисперсия D = 11 2 *0 + 16 2 *0.67 + 21 2 *0.33 + 26 2 *0 + 31 2 *0 + 36 2 *0 - 17.67 2 = 5.56
Условный закон распределения X(Y=40) .
P(X=11/Y=40) = 0/55 = 0
P(X=16/Y=40) = 0/55 = 0
P(X=21/Y=40) = 6/55 = 0.11
P(X=26/Y=40) = 45/55 = 0.82
P(X=31/Y=40) = 4/55 = 0.0727
P(X=36/Y=40) = 0/55 = 0
Условное математическое ожидание M = 11*0 + 16*0 + 21*0.11 + 26*0.82 + 31*0.0727 + 36*0 = 25.82
Условная дисперсия D = 11 2 *0 + 16 2 *0 + 21 2 *0.11 + 26 2 *0.82 + 31 2 *0.0727 + 36 2 *0 - 25.82 2 = 4.51
Условный закон распределения X(Y=50) .
P(X=11/Y=50) = 0/16 = 0
P(X=16/Y=50) = 0/16 = 0
P(X=21/Y=50) = 2/16 = 0.13
P(X=26/Y=50) = 8/16 = 0.5
P(X=31/Y=50) = 6/16 = 0.38
P(X=36/Y=50) = 0/16 = 0
Условное математическое ожидание M = 11*0 + 16*0 + 21*0.13 + 26*0.5 + 31*0.38 + 36*0 = 27.25
Условная дисперсия D = 11 2 *0 + 16 2 *0 + 21 2 *0.13 + 26 2 *0.5 + 31 2 *0.38 + 36 2 *0 - 27.25 2 = 10.94
Условный закон распределения X(Y=60) .
P(X=11/Y=60) = 0/14 = 0
P(X=16/Y=60) = 0/14 = 0
P(X=21/Y=60) = 0/14 = 0
P(X=26/Y=60) = 4/14 = 0.29
P(X=31/Y=60) = 7/14 = 0.5
P(X=36/Y=60) = 3/14 = 0.21
Условное математическое ожидание M = 11*0 + 16*0 + 21*0 + 26*0.29 + 31*0.5 + 36*0.21 = 30.64
Условная дисперсия D = 11 2 *0 + 16 2 *0 + 21 2 *0 + 26 2 *0.29 + 31 2 *0.5 + 36 2 *0.21 - 30.64 2 = 12.37
3. Условный закон распределения Y .
Условный закон распределения Y(X=11) .
P(Y=20/X=11) = 2/2 = 1
P(Y=30/X=11) = 0/2 = 0
P(Y=40/X=11) = 0/2 = 0
P(Y=50/X=11) = 0/2 = 0
P(Y=60/X=11) = 0/2 = 0
Условное математическое ожидание M = 20*1 + 30*0 + 40*0 + 50*0 + 60*0 = 20
Условная дисперсия D = 20 2 *1 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *0 - 20 2 = 0
Условный закон распределения Y(X=16) .
P(Y=20/X=16) = 4/10 = 0.4
P(Y=30/X=16) = 6/10 = 0.6
P(Y=40/X=16) = 0/10 = 0
P(Y=50/X=16) = 0/10 = 0
P(Y=60/X=16) = 0/10 = 0
Условное математическое ожидание M = 20*0.4 + 30*0.6 + 40*0 + 50*0 + 60*0 = 26
Условная дисперсия D = 20 2 *0.4 + 30 2 *0.6 + 40 2 *0 + 50 2 *0 + 60 2 *0 - 26 2 = 24
Условный закон распределения Y(X=21) .
P(Y=20/X=21) = 0/11 = 0
P(Y=30/X=21) = 3/11 = 0.27
P(Y=40/X=21) = 6/11 = 0.55
P(Y=50/X=21) = 2/11 = 0.18
P(Y=60/X=21) = 0/11 = 0
Условное математическое ожидание M = 20*0 + 30*0.27 + 40*0.55 + 50*0.18 + 60*0 = 39.09
Условная дисперсия D = 20 2 *0 + 30 2 *0.27 + 40 2 *0.55 + 50 2 *0.18 + 60 2 *0 - 39.09 2 = 44.63
Условный закон распределения Y(X=26) .
P(Y=20/X=26) = 0/57 = 0
P(Y=30/X=26) = 0/57 = 0
P(Y=40/X=26) = 45/57 = 0.79
P(Y=50/X=26) = 8/57 = 0.14
P(Y=60/X=26) = 4/57 = 0.0702
Условное математическое ожидание M = 20*0 + 30*0 + 40*0.79 + 50*0.14 + 60*0.0702 = 42.81
Условная дисперсия D = 20 2 *0 + 30 2 *0 + 40 2 *0.79 + 50 2 *0.14 + 60 2 *0.0702 - 42.81 2 = 34.23
Условный закон распределения Y(X=31) .
P(Y=20/X=31) = 0/17 = 0
P(Y=30/X=31) = 0/17 = 0
P(Y=40/X=31) = 4/17 = 0.24
P(Y=50/X=31) = 6/17 = 0.35
P(Y=60/X=31) = 7/17 = 0.41
Условное математическое ожидание M = 20*0 + 30*0 + 40*0.24 + 50*0.35 + 60*0.41 = 51.76
Условная дисперсия D = 20 2 *0 + 30 2 *0 + 40 2 *0.24 + 50 2 *0.35 + 60 2 *0.41 - 51.76 2 = 61.59
Условный закон распределения Y(X=36) .
P(Y=20/X=36) = 0/3 = 0
P(Y=30/X=36) = 0/3 = 0
P(Y=40/X=36) = 0/3 = 0
P(Y=50/X=36) = 0/3 = 0
P(Y=60/X=36) = 3/3 = 1
Условное математическое ожидание M = 20*0 + 30*0 + 40*0 + 50*0 + 60*1 = 60
Условная дисперсия D = 20 2 *0 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *1 - 60 2 = 0
Ковариация .
cov(X,Y) = M - M[X]·M[Y]
cov(X,Y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 - 25.3 · 42.3 = 38.11
Если случайные величины независимы, то их ковариации равна нулю. В нашем случае cov(X,Y) ≠ 0.
Коэффициент корреляции .


Уравнение линейной регрессии с y на x имеет вид:

Уравнение линейной регрессии с x на y имеет вид:

Найдем необходимые числовые характеристики.
Выборочные средние:
x = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 42.3
y = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 25.3
Дисперсии:
σ 2 x = (20 2 (2 + 4) + 30 2 (6 + 3) + 40 2 (6 + 45 + 4) + 50 2 (2 + 8 + 6) + 60 2 (4 + 7 + 3))/100 - 42.3 2 = 99.71
σ 2 y = (11 2 (2) + 16 2 (4 + 6) + 21 2 (3 + 6 + 2) + 26 2 (45 + 8 + 4) + 31 2 (4 + 6 + 7) + 36 2 (3))/100 - 25.3 2 = 24.01
Откуда получаем среднеквадратические отклонения:
σ x = 9.99 и σ y = 4.9
и ковариация:
Cov(x,y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 - 42.3 · 25.3 = 38.11
Определим коэффициент корреляции:


Запишем уравнения линий регрессии y(x):

и вычисляя, получаем:
y x = 0.38 x + 9.14
Запишем уравнения линий регрессии x(y):

и вычисляя, получаем:
x y = 1.59 y + 2.15
Если построить точки, определяемые таблицей и линии регрессии, увидим, что обе линии проходят через точку с координатами (42.3; 25.3) и точки расположены близко к линиям регрессии.
Значимость коэффициента корреляции .

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=100-m-1 = 98 находим t крит:
t крит (n-m-1;α/2) = (98;0.025) = 1.984
где m = 1 - количество объясняющих переменных.
Если t набл > t критич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим.

Задание . Количество попаданий пар значений случайных величин X и Y в соответствующие интервалы приведены в таблице. По этим данным найти выборочный коэффициент корреляции и выборочные уравнения прямых линий регрессии Y на X и X на Y .
Решение

Пример . Распределение вероятностей двумерной случайной величины (X, Y) задано таблицей. Найти законы распределения составляющих величин X, Y и коэффициент корреляции p(X, Y).
Скачать решение

Задание . Двумерная дискретная величина (X, Y) задана законом распределения. Найти законы распределения составляющих X и Y, ковариацию и коэффициент корреляции.

Пусть дана двумерная случайная величина $(X,Y)$.

Определение 1

Законом распределения двумерной случайной величины $(X,Y)$ - называется множество возможных пар чисел $(x_i,\ y_j)$ (где $x_i \epsilon X,\ y_j \epsilon Y$) и их вероятностей $p_{ij}$.

Чаще всего закон распределения двумерной случайной величины записывается в виде таблицы (Таблица 1).

Рисунок 1. Закон распределения двумерной случайной величины.

Вспомним теперь теорему о сложении вероятностей независимых событий.

Теорема 1

Вероятность суммы конечного числа независимых событий ${\ A}_1$, ${\ A}_2$, ... ,$\ {\ A}_n$ вычисляется по формуле:

Пользуясь этой формулой можно получить законы распределения для каждой компоненты двумерной случайной величины, то есть:

Отсюда будет следовать, что сумма всех вероятностей двумерной системы имеет следующий вид:

Рассмотрим подробно (поэтапно) задачу, связанную с понятием закона распределения двумерной случайной величины.

Пример 1

Закон распределения двумерной случайной величины задан следующей таблицей:

Рисунок 2.

Найти законы распределения случайных величин $X,\ Y$, $X+Y$ и проверить в каждом случае выполнение равенства полной суммы вероятностей единице.

  1. Найдем сначала распределение случайной величины $X$. Случайная величина $X$ может принимать значения $x_1=2,$ $x_2=3$, $x_3=5$. Для нахождения распределения будем пользоваться теоремой 1.

Найдем вначале сумму вероятностей $x_1$ следующим образом:

Рисунок 3.

Аналогично найдем $P\left(x_2\right)$ и $P\left(x_3\right)$:

\ \

Рисунок 4.

  1. Найдем теперь распределение случайной величины $Y$. Случайная величина $Y$ может принимать значения $x_1=1,$ $x_2=3$, $x_3=4$. Для нахождения распределения будем пользоваться теоремой 1.

Найдем вначале сумму вероятностей $y_1$ следующим образом:

Рисунок 5.

Аналогично найдем $P\left(y_2\right)$ и $P\left(y_3\right)$:

\ \

Значит, закон распределения величины $X$ имеет следующий вид:

Рисунок 6.

Проверим выполнение равенства полной суммы вероятностей:

  1. Осталось найти закон распределения случайной величины $X+Y$.

Обозначим её для удобства через $Z$: $Z=X+Y$.

Вначале найдем, какие значения может принимать данная величина. Для этого будем попарно складывать значения величин $X$ и $Y$. Получим следующие значения: 3, 4, 6, 5, 6, 8, 6, 7, 9. Теперь, отбрасывая совпавшие величины, получим, что случайная величина $X+Y$ может принимать значения $z_1=3,\ z_2=4,\ z_3=5,\ z_4=6,\ z_5=7,\ z_6=8,\ z_7=9.\ $

Найдем для начала $P(z_1)$. Так как значение $z_1$ единично, то оно находится следующим образом:

Рисунок 7.

Аналогично находятся се вероятности, кроме $P(z_4)$:

Найдем теперь $P(z_4)$ следующим образом:

Рисунок 8.

Значит, закон распределения величины $Z$ имеет следующий вид:

Рисунок 9.

Проверим выполнение равенства полной суммы вероятностей: