Электроны и заряженные частицы. Электрический заряд. Электрический заряд и элементарные частицы. Закон сохранения заряда Элементарная частица без электрического заряда

Электрическим зарядом называется свойство частиц и физических тел, характеризующее их взаимодействие с внешними и собственными электромагнитными полями. Электроны - это простейшие заряженные частицы. Как известно из элементарной школьной физики, любое физическое тело состоит из молекул, а те в свою очередь из атомов. Любой атом состоит из положительно заряженного ядра и отрицательно за¬ряженных электронов, вращающихся вокруг ядра по орбитам, наподобие вращения планет вокруг Солнца.
Заряженные объекты притягиваются к другим заряженным частицам или объектам. Из той же школьной физики мы помним и простейшие практические опыты с электрическими зарядами. Например, если взять воздушный шарик и быстро потереть его о джемпер, а затем приложить его потертой стороной к стенке, то воздушный шарик прилипнет к ней. Это произошло потому, что мы зарядили воздушный шарик, и появилась электрическая сила притяжения между ним и стеной. (Хотя первоначально стена была не заряжена, на ней индуцировался заряд при приближении к ней воздушного шарика.)
Электрически заряженные тела и частицы бывают двух видов: отрицательные и положительные. Разноименные заряды притягиваются друг к другу, а одноименные отталкиваются. Хорошей аналогией этому служат обычные магнитики, которые притягиваются друг к другу разноименными полюсами и отталкиваются одноименными. Как мы уже говорили электроны имеют отрицательный заряд, а атомные ядра - положительный (в составе ядра имеются положительно заряженные протоны, а также не имеющие электрического заряда нейтроны). В ядерной физике также рассматриваются частицы - позитроны, которые близки по свойствам электронам, но имеют положительный заряд. Хотя позитрон - это лишь физико-математическая абстракция - в природе позитронов не найдено.
Если у нас нет позитронов, то как же тогда можно зарядить объект положительно? Предположим, что имеется объект, который был заряжен отрицательно, потому что на его поверхности находятся 2000 свободных (то есть не связанных с ядрами конкретных атомов) электронов.
Рассматривая другой, подобный, объект, который имеет только 1000 свободных электронов на поверхности, можно сказать, что первый объект заряжен более отрицательно, чем второй. Но также можно сказать, что второй объект заряжен более положительно, чем первый. Это просто вопрос того, что математически принято за начало отсчета и с какой точки зрения смотреть на заряды.
Чтобы зарядить наш воздушный шарик, нужно выполнить определенную работу, и затратить энергию. Нужно преодолеть трение воздушного шарика о шерстяной джемпер. В процессе трения электроны перемещаются с одной поверхности на другую. Следовательно, один объект (воздушный шарик) приобрел избыток свободных электронов и зарядился отрицательно, в то время как шерстяной джемпер потерял то же самое количество свободных электронов и зарядился положительно.
Электрический ток. Электродвижущая сила. Работа электрического тока

Следовательно, воздушный шарик должен прилипнуть к джемперу. Или нет? Безусловно, он будет притягиваться к джемперу, так как у этих двух тел электрические заряды противоположного знака. Но что произойдет, когда они соприкоснутся? Воз¬душный шарик не прилипнет! Это происходит потому, что положительно заряженные волокна джемпера прикоснутся к отрицательно заряженным областям воздушного шарика, и свободные электроны с поверхности шарика притянутся джемпером и вернутся на него, нейтрализуя, таким образом, заряд.
При соприкосновении шарика с джемпером, между ними возник поток свободных электронов, которым всегда сопровождаются электрические явления. С этого момента можно прекратить отвлеченные разговоры о шариках и джемперах, и перейти непосредственно к электротехнике.
Электрон - частица очень маленькая (да и частица ли это вообще, либо сгусток энергии - физики до сих пор не пришли к единому мнению на сей счет) и имеет не¬большой заряд, поэтому необходима более удобная единица измерения электрического заряда, нежели количество свободных электронов на поверхности заряженного тела. Такой удобной единицей измерения электрического заряда является кулон (Кл). Теперь можно сказать, что если разность электрических зарядов между двумя телами составляет 1 кулон, то при их взаимодействии будет перемещено приблизительно 6 180 000 000 000 000 000 электронов. Разумеется, измерение в кулонах намного удобнее!

Морган Джонс
Ламповые усилители
Перевод с английского под общей научной редакцией к.т.н. доц. Иванюшкина Р Ю.

Со словами «электричество», «электрический заряд», «электрический ток» вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» - и вы убедитесь, что это не так-то просто. Дело в том, что понятие заряда - это основное, первичное понятие, не сводимое на современном уровне развития наших знании к каким-либо более простым, элементарным понятиям

Попытаемся сначала выяснить, что понимают под утверждением: данное тело или частица имеет электрический заряд.

Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения с силой, сравнительно медленно убывающей по мере увеличения расстояния между ними, обратно пропорциональной квадрату расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстоянии, но эта сила в огромное число раз превосходит силу тяготения. Так. в атоме водорода, изображенном схематически на рисунке 91, электрон притягивается к ядру (протону) с силой, в 101" раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые медленно уменьшаются с увеличением расстояния и во много раз превышают силы всемирного тяготения, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует электрического заряди без частицы.

Взаимодействия между заряженными частицами носят название электромагнитных. Электрический заряд - физическая величина, определяющая интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

Электрический заряд элементарной частицы это не особый «механизм» в частице, который можно было бы снять с нее, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование

определенных силовых взаимодействий между ними. Но мы, в сущности, ннчего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Законы эти не просты, изложить их в нескольких словах невозможно. Вот почему нельзя дать достаточно удовлетворительного краткого определения того, что такое электрический заряд.

Два знака электрических зарядов. Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам из курса физики VII класса, означает, что в природе есть частицы с электрическими зарядами противоположных знаков. При одинаковых знаках заряда частицы отталкиваются, а при разных притягиваются.

Заряд элементарных частиц - протонов, входящих в состав всех атомных ядер, называют положительным, а заряд электронов - отрицательным. Между положительными и отрицательными зарядами нет внутренних различий. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.

Элементарный заряд. Кроме электронов и протонов, есть еще несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно мало, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в X классе.

К частицам, не имеющим электрического заряда, относится нейтрон. Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра.

Если элементарная частица имеет заряд, то его значение, как показали многочисленные опыты, строго определенно (об одном из таких опытов - опыте Милликена и Иоффе - было рассказано в учебнике для VII класса)

Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы. Заряды элементарных частиц различаются лишь знаками. Отделить часть заряда, например у электрона, невозможно.

«Физика - 10 класс»

Вначале рассмотрим наиболее простой случай, когда электрически заряженные тела находятся в покое.

Раздел электродинамики, посвящённый изучению условий равновесия электрически заряженных тел, называют электростатикой .

Что такое электрический заряд?
Какие существуют заряды?

Со словами электричество, электрический заряд, электрический ток вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» Само понятие заряд - это основное, первичное понятие, которое не сводится на современном уровне развития наших знаний к каким-либо более простым, элементарным понятиям.

Попытаемся сначала выяснить, что понимают под утверждением: «Данное тело или частица имеет электрический заряд».

Все тела построены из мельчайших частиц, которые неделимы на более простые и поэтому называются элементарными .

Элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения. С увеличением расстояния между частицами сила тяготения убывает обратно пропорционально квадрату этого расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения.

Так в атоме водорода, изображённом схематически на рисунке 14.1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными .

Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействие заряженных частиц называется электромагнитным .

Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

Электрический заряд элементарной частицы - это не особый механизм в частице, который можно было бы снять с неё, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определённых силовых взаимодействий между ними.

Мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Эти законы непросты, и изложить их в нескольких словах невозможно. Поэтому нельзя дать достаточно удовлетворительное краткое определение понятию электрический заряд .


Два знака электрических зарядов.


Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам, означает, что в природе есть частицы с электрическими зарядами противоположных знаков; в случае зарядов одинаковых знаков частицы отталкиваются, а в случае разных притягиваются.

Заряд элементарных частиц - протонов , входящих в состав всех атомных ядер, называют положительным, а заряд электронов - отрицательным. Между положительными и отрицательными зарядами внутренних различий нет. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.


Элементарный заряд.


Кроме электронов и протонов, есть ещё несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно малое время, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в 11 классе.

К частицам, не имеющим электрического заряда, относится нейтрон . Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра. Если элементарная частица имеет заряд, то его значение строго определено.

Заряженные тела Электромагнитные силы в природе играют огромную роль благодаря тому, что в состав всех тел входят электрически заряженные частицы. Составные части атомов - ядра и электроны - обладают электрическим зарядом.

Непосредственно действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны.

Атом любого вещества нейтрален, так как число электронов в нём равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда. Так, отрицательный заряд тела обусловлен избытком числа электронов по сравнению с числом протонов, а положительный - недостатком электронов.

Для того чтобы получить электрически заряженное макроскопическое тело, т. е. наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного или перенести на нейтральное тело отрицательный заряд.

Это можно сделать с помощью трения. Если провести расчёской по сухим волосам, то небольшая часть самых подвижных заряженных частиц - электронов перейдёт с волос на расчёску и зарядит её отрицательно, а волосы зарядятся положительно.


Равенство зарядов при электризации


С помощью опыта можно доказать, что при электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

Возьмём электрометр, на стержне которого укреплена металлическая сфера с отверстием, и две пластины на длинных рукоятках: одна из эбонита, а другая из плексигласа. При трении друг о друга пластины электризуются.

Внесём одну из пластин внутрь сферы, не касаясь её стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберётся на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнётся от стержня электрометра (рис. 14.2, а).

Если внести внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки от стержня, причём на тот же угол, что и в первом опыте.

Опустив обе пластины внутрь сферы, мы вообще не обнаружим отклонения стрелки (рис. 14.2, б). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку.

Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

В типографиях происходит электризация бумаги при печати, и листы слипаются. Чтобы это не происходило, применяют специальные устройства для стекания заряда. Однако электризация тел при тесном контакте иногда используется, например, в различных электрокопировальных установках и др.


Закон сохранения электрического заряда.


Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для изолированной системы .

В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

q 1 + q 2 + q 3 + ... + q n = const. (14.1)

где q 1 , q 2 и т. д. - заряды отдельных заряженных тел.

Закон сохранения заряда имеет глубокий смысл. Если число заряженных элементарных частиц не меняется, то выполнение закона сохранения заряда очевидно. Но элементарные частицы могут превращаться друг в друга, рождаться и исчезать, давая жизнь новым частицам.

Однако во всех случаях заряженные частицы рождаются только парами с одинаковыми по модулю и противоположными по знаку зарядами; исчезают заряженные частицы тоже только парами, превращаясь в нейтральные. И во всех этих случаях алгебраическая сумма зарядов остаётся одной и той же.

Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.