Вторая средняя линия трапеции свойства. Теорема Фалеса. Средняя линия треугольника. Что мы узнали

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Определение 1

Функция f (x) является непрерывной в точке x 0 , если предел слева равен пределу справа и совпадает со значением функции в точке x 0 , т.е.: lim x → x 0 - 0 f (x) = lim x → x 0 + 0 f (x) = f (x 0)

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Пример 1

Дана функция f (x) = 1 6 (x - 8) 2 - 8 . Необходимо доказать ее непрерывность в точке х 0 = 2 .

Решение

В первую очередь, определим существование предела слева. Чтобы это сделать, используем последовательность аргументов х n , сводящуюся к х 0 = 2 · (х n < 2) . Например, такой последовательностью может быть:

2 , 0 , 1 , 1 1 2 , 1 3 4 , 1 7 8 , 1 15 16 , . . . , 1 1023 1024 , . . . → 2

Соответствующая последовательность значений функций выглядит так:

f (- 2) ; f (0) ; f (1) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 . 667 ; 2 . 667 ; 0 . 167 ; - 0 . 958 ; - 1 . 489 ; - 1 . 747 ; - 1 . 874 ; . . . ; - 1 . 998 ; . . . → - 2

на чертеже они обозначены зеленым цветом.

Достаточно очевидно, что такая последовательность сводится к - 2 , значит lim x → 2 - 0 1 6 (x - 8) 2 - 8 = - 2 .

Определим существование предела справа: используем последовательность аргументов х n , сводящуюся к х 0 = 2 (х n > 2) . Например, такой последовательностью может быть:

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Соответствующая последовательность функций:

f (6) ; f (4) ; f (3) ; f 2 1 2 ; f 2 1 4 ; f 2 1 8 ; f 2 1 16 ; . . . ; f 2 1 1024 ; . . . = = - 7 . 333 ; - 5 . 333 ; - 3 . 833 ; - 2 . 958 ; - 2 . 489 ; - 2 . 247 ; - 2 . 247 ; - 2 . 124 ; . . . ; - 2 . 001 ; . . . → - 2

на рисунке обозначена синим цветом.

И эта последовательность сводится к - 2 , тогда lim x → 2 + 0 1 6 (x - 8) 2 - 8 = - 2 .

Действиями выше было показано, что пределы справа и слева являются равными, а значит существует предел функции f (x) = 1 6 x - 8 2 - 8 в точке х 0 = 2 , при этом lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

После вычисления значения функции в заданной точке очевидно выполнение равенства:

lim x → 2 - 0 f (x) = lim x → 2 + 0 f (x) = f (2) = 1 6 (2 - 8) 2 - 8 = - 2 что свидетельствует о непрерывности заданной функции в заданной точке.

Покажем графически:

Ответ: Непрерывность функции f (x) = 1 6 (x - 8) 2 - 8 в заданной части доказано.

Устранимый разрыв первого рода

Определение 2

Функция имеет устранимый разрыв первого рода в точке х 0 , когда пределы справа и слева равны, но не равны значению функции в точке, т.е.:

lim x → x 0 - 0 f (x) = lim x → x 0 + 0 f (x) ≠ f (x 0)

Пример 2

Задана функция f (x) = x 2 - 25 x - 5 . Необходимо определить точки ее разрыва и определить их тип.

Решение

Сначала обозначим область определения функции: D (f (x)) ⇔ D x 2 - 25 x - 5 ⇔ x - 5 ≠ 0 ⇔ x ∈ (- ∞ ; 5) ∪ (5 ; + ∞)

В заданной функции точкой разрыва может служить только граничная точка области определения, т.е. х 0 = 5 . Исследуем функцию на непрерывность в этой точке.

Выражение x 2 - 25 x - 5 упростим: x 2 - 25 x - 5 = (x - 5) (x + 5) x - 5 = x + 5 .

Определим пределы справа и слева. Поскольку функция g (x) = x + 5 является непрерывной при любом действительном x , тогда:

lim x → 5 - 0 (x + 5) = 5 + 5 = 10 lim x → 5 + 0 (x + 5) = 5 + 5 = 10

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Определение 3 Пример 3

Задана кусочно-непрерывная функция f (x) = x + 4 , x < - 1 , x 2 + 2 , - 1 ≤ x < 1 2 x , x ≥ 1 . Необходимо изучить заданную функцию на предмет непрерывности, обозначить вид точек разрыва, составить чертеж.

Решение

Разрывы данной функции могут быть лишь в точке х 0 = - 1 или в точке х 0 = 1 .

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

  • слева от точки х 0 = - 1 заданная функция есть f (x) = x + 4 , тогда в силу непрерывности линейной функции: lim x → - 1 - 0 f (x) = lim x → - 1 - 0 (x + 4) = - 1 + 4 = 3 ;
  • непосредственно в точке х 0 = - 1 функция принимает вид: f (x) = x 2 + 2 , тогда: f (- 1) = (- 1) 2 + 2 = 3 ;
  • на промежутке (- 1 ; 1) заданная функция есть: f (x) = x 2 + 2 . Опираясь на свойство непрерывности квадратичной функции, имеем: lim x → - 1 + 0 f (x) = lim x → - 1 + 0 (x 2 + 2) = (- 1) 2 + 2 = 3 lim x → 1 - 0 f (x) = lim x → 1 - 0 (x 2 + 2) = (1) 2 + 2 = 3
  • в точке х 0 = - 1 функция имеет вид: f (x) = 2 x и f (1) = 2 · 1 = 2 .
  • справа от точки х 0 заданная функция есть f (x) = 2 x . В силу непрерывности линейной функции: lim x → 1 + 0 f (x) = lim x → 1 + 0 (2 x) = 2 · 1 = 2

Ответ: в конечном счете мы получили:

  • lim x → - 1 - 0 f (x) = lim x → - 1 + 0 f (x) = f (- 1) = 3 - это означает, что в точке х 0 = - 1 заданная кусочная функция непрерывна;
  • lim x → - 1 - 0 f (x) = 3 , lim x → 1 + 0 f (x) = 2 - таким образом, в точке х 0 = 1 определён неустранимый разрыв первого рода (скачок).

Нам остается только подготовить чертеж данного задания.

Определение 4

Функция имеет разрыв второго рода в точке х 0 , когда какой-либо из пределов слева lim x → x 0 - 0 f (x) или справа lim x → x 0 + 0 f (x) не существует или бесконечен.

Пример 4

Задана функция f (x) = 1 x . Необходимо исследовать заданную функцию на непрерывность, определить вид точек разрыва, подготовить чертеж.

Решение

Запишем область определения функции: x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) .

Найдем пределы справа и слева от точки х 0 = 0 .

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

8 ; - 4 ; - 2 ; - 1 ; - 1 2 ; - 1 4 ; . . . ; - 1 1024 ; . . .

Ей соответствует последовательность значений функции:

f (- 8) ; f (- 4) ; f (- 2) ; f (- 1) ; f - 1 2 ; f - 1 4 ; . . . ; f - 1 1024 ; . . . = = - 1 8 ; - 1 4 ; - 1 2 ; - 1 ; - 2 ; - 4 ; . . . ; - 1024 ; . . .

Очевидно, что эта последовательность является бесконечно большой отрицательной, тогда lim x → 0 - 0 f (x) = lim x → 0 - 0 1 x = - ∞ .

Тепереь зададим произвольную последовательность значений аргумента, сходящуюся к х 0 справа. К примеру: 8 ; 4 ; 2 ; 1 ; 1 2 ; 1 4 ; . . . ; 1 1024 ; . . . , и ей соответствует последовательность значений функции:

f (8) ; f (4) ; f (2) ; f (1) ; f 1 2 ; f 1 4 ; . . . ; f 1 1024 ; . . . = = 1 8 ; 1 4 ; 1 2 ; 1 ; 2 ; 4 ; . . . ; 1024 ; . . .

Эта последовательность - бесконечно большая положительная, а значит lim x → 0 + 0 f (x) = lim x → 0 + 0 1 x = + ∞ .

Ответ : точка х 0 = 0 - точка разрыва функции второго рода.

Проиллюстрируем:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение непрерывности по Гейне

Говорят, что функция действительного переменного \(f\left(x \right)\) является непрерывной в точке \(a \in \mathbb{R}\) (\(\mathbb{R}-\)множество действительных чисел), если для любой последовательности \(\left\{ {{x_n}} \right\}\), такой, что \[\lim\limits_{n \to \infty } {x_n} = a,\] выполняется соотношение \[\lim\limits_{n \to \infty } f\left({{x_n}} \right) = f\left(a \right).\] На практике удобно использовать следующие \(3\) условия непрерывности функции \(f\left(x \right)\) в точке \(x = a\) (которые должны выполняться одновременно):

  1. Функция \(f\left(x \right)\) определена в точке \(x = a\);
  2. Предел \(\lim\limits_{x \to a} f\left(x \right)\) существует;
  3. Выполняется равенство \(\lim\limits_{x \to a} f\left(x \right) = f\left(a \right)\).

Определение непрерывности по Коши (нотация \(\varepsilon - \delta\))

Рассмотрим функцию \(f\left(x \right)\), которая отображает множество действительных чисел \(\mathbb{R}\) на другое подмножество \(B\) действительных чисел. Говорят, что функция \(f\left(x \right)\) является непрерывной в точке \(a \in \mathbb{R}\), если для любого числа \(\varepsilon > 0\) существует число \(\delta > 0\), такое, что для всех \(x \in \mathbb{R}\), удовлетворяющих соотношению \[\left| {x - a} \right| Определение непрерывности в терминах приращений аргумента и функции

Определение непрерывности можно также сформулировать, используя приращения аргумента и функции. Функция является непрерывной в точке \(x = a\), если справедливо равенство \[\lim\limits_{\Delta x \to 0} \Delta y = \lim\limits_{\Delta x \to 0} \left[ {f\left({a + \Delta x} \right) - f\left(a \right)} \right] = 0,\] где \(\Delta x = x - a\).

Приведенные определения непрерывности функции эквивалентны на множестве действительных чисел.

Функция является непрерывной на данном интервале , если она непрерывна в каждой точке этого интервала.

Теоремы непрерывности

Теорема 1.
Пусть функция \(f\left(x \right)\) непрерывна в точке \(x = a\) и \(C\) является константой. Тогда функция \(Cf\left(x \right)\) также непрерывна при \(x = a\).

Теорема 2.
Даны две функции \({f\left(x \right)}\) и \({g\left(x \right)}\), непрерывные в точке \(x = a\). Тогда сумма этих функций \({f\left(x \right)} + {g\left(x \right)}\) также непрерывна в точке \(x = a\).

Теорема 3.
Предположим, что две функции \({f\left(x \right)}\) и \({g\left(x \right)}\) непрерывны в точке \(x = a\). Тогда произведение этих функций \({f\left(x \right)} {g\left(x \right)}\) также непрерывно в точке \(x = a\).

Теорема 4.
Даны две функции \({f\left(x \right)}\) и \({g\left(x \right)}\), непрерывные при \(x = a\). Тогда отношение этих функций \(\large\frac{{f\left(x \right)}}{{g\left(x \right)}}\normalsize\) также непрерывно при \(x = a\) при условии, что \({g\left(a \right)} \ne 0\).

Теорема 5.
Предположим, что функция \({f\left(x \right)}\) является дифференцируемой в точке \(x = a\). Тогда функция \({f\left(x \right)}\) непрерывна в этой точке (т.е. из дифференцируемости следует непрерывность функции в точке; обратное − неверно).

Теорема 6 (Теорема о предельном значении).
Если функция \({f\left(x \right)}\) непрерывна на закрытом и ограниченном интервале \(\left[ {a,b} \right]\), то она ограничена сверху и снизу на данном интервале. Другими словами, существуют числа \(m\) и \(M\), такие, что \ для всех \(x\) в интервале \(\left[ {a,b} \right]\) (рисунок 1).

Рис.1

Рис.2

Теорема 7 (Теорема о промежуточном значении).
Пусть функция \({f\left(x \right)}\) непрерывна на закрытом и ограниченном интервале \(\left[ {a,b} \right]\). Тогда, если \(c\) − некоторое число, большее \({f\left(a \right)}\) и меньшее \({f\left(b \right)}\), то существует число \({x_0}\), такое, что \ Данная теорема проиллюстрирована на рисунке 2.

Непрерывность элементарных функций

Все элементарные функции являются непрерывными в любой точке свой области определения.

Функция называется элементарной , если она построена из конечного числа композиций и комбинаций
(с использованием \(4\) действий - сложение, вычитание, умножение и деление) . Множество основных элементарных функций включает в себя:

Эта статья - о непрерывной числовой функции. О непрерывных отображениях в различных разделах математики см. непрерывное отображение .

Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Непрерывная функция, вообще говоря, синоним понятия непрерывное отображение , тем не менее чаще всего этот термин используется в более узком смысле - для отображений между числовыми пространствами, например, на вещественной прямой . Эта статья посвящена именно непрерывным функциям, определённым на подмножестве вещественных чисел и принимающим вещественные значения.

Энциклопедичный YouTube

    1 / 5

    ✪ Непрерывность функции и точки разрыва функции

    ✪ 15 Непрерывная функция

    ✪ Непрерывные функции

    ✪ Математический анализ, 5 урок, Непрерывность функции

    ✪ Непрерывная случайная величина. Функция распределения

    Субтитры

Определение

Если «поправить» функцию f {\displaystyle f} в точке устранимого разрыва и положить f (a) = lim x → a f (x) {\displaystyle f(a)=\lim \limits _{x\to a}f(x)} , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точка разрыва «скачок»

Разрыв «скачок» возникает, если

lim x → a − 0 f (x) ≠ lim x → a + 0 f (x) {\displaystyle \lim \limits _{x\to a-0}f(x)\neq \lim \limits _{x\to a+0}f(x)} .

Точка разрыва «полюс»

Разрыв «полюс» возникает, если один из односторонних пределов бесконечен.

lim x → a − 0 f (x) = ± ∞ {\displaystyle \lim \limits _{x\to a-0}f(x)=\pm \infty } или lim x → a + 0 f (x) = ± ∞ {\displaystyle \lim \limits _{x\to a+0}f(x)=\pm \infty } . [ ]

Точка существенного разрыва

В точке существенного разрыва один из односторонних пределов вообще отсутствует.

Классификация изолированных особых точек в R n , n>1

Для функций f: R n → R n {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{n}} и f: C → C {\displaystyle f:\mathbb {C} \to \mathbb {C} } нет нужды работать с точками разрыва, зато часто приходится работать с особыми точками (точками, где функция не определена). Классификация сходная.

Понятие «скачок» отсутствует. То, что в R {\displaystyle \mathbb {R} } считается скачком, в пространствах бóльших размерностей - существенная особая точка.

Свойства

Локальные

  • Функция, непрерывная в точке a {\displaystyle a} , является ограниченной в некоторой окрестности этой точки.
  • Если функция f {\displaystyle f} непрерывна в точке a {\displaystyle a} и f (a) > 0 {\displaystyle f(a)>0} (или f (a) < 0 {\displaystyle f(a)<0} ), то f (x) > 0 {\displaystyle f(x)>0} (или f (x) < 0 {\displaystyle f(x)<0} ) для всех x {\displaystyle x} , достаточно близких к a {\displaystyle a} .
  • Если функции f {\displaystyle f} и g {\displaystyle g} непрерывны в точке a {\displaystyle a} , то функции f + g {\displaystyle f+g} и f ⋅ g {\displaystyle f\cdot g} тоже непрерывны в точке a {\displaystyle a} .
  • Если функции f {\displaystyle f} и g {\displaystyle g} непрерывны в точке a {\displaystyle a} и при этом g (a) ≠ 0 {\displaystyle g(a)\neq 0} , то функция f / g {\displaystyle f/g} тоже непрерывна в точке a {\displaystyle a} .
  • Если функция f {\displaystyle f} непрерывна в точке a {\displaystyle a} и функция g {\displaystyle g} непрерывна в точке b = f (a) {\displaystyle b=f(a)} , то их композиция h = g ∘ f {\displaystyle h=g\circ f} непрерывна в точке a {\displaystyle a} .

Глобальные

  • компактном множестве), равномерно непрерывна на нём.
  • Функция, непрерывная на отрезке (или любом другом компактном множестве), ограничена и достигает на нём свои максимальное и минимальное значения.
  • Областью значений функции f {\displaystyle f} , непрерывной на отрезке , является отрезок [ min f , max f ] , {\displaystyle [\min f,\ \max f],} где минимум и максимум берутся по отрезку [ a , b ] {\displaystyle } .
  • Если функция f {\displaystyle f} непрерывна на отрезке [ a , b ] {\displaystyle } и f (a) ⋅ f (b) < 0 , {\displaystyle f(a)\cdot f(b)<0,} то существует точка в которой f (ξ) = 0 {\displaystyle f(\xi)=0} .
  • Если функция f {\displaystyle f} непрерывна на отрезке [ a , b ] {\displaystyle } и число φ {\displaystyle \varphi } удовлетворяет неравенству f (a) < φ < f (b) {\displaystyle f(a)<\varphi или неравенству f (a) > φ > f (b) , {\displaystyle f(a)>\varphi >f(b),} то существует точка ξ ∈ (a , b) , {\displaystyle \xi \in (a,b),} в которой f (ξ) = φ {\displaystyle f(\xi)=\varphi } .
  • Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строго монотонна .
  • Монотонная функция на отрезке [ a , b ] {\displaystyle } непрерывна в том и только в том случае, когда область её значений является отрезком с концами f (a) {\displaystyle f(a)} и f (b) {\displaystyle f(b)} .
  • Если функции f {\displaystyle f} и g {\displaystyle g} непрерывны на отрезке [ a , b ] {\displaystyle } , причем f (a) < g (a) {\displaystyle f(a) и f (b) > g (b) , {\displaystyle f(b)>g(b),} то существует точка ξ ∈ (a , b) , {\displaystyle \xi \in (a,b),} в которой f (ξ) = g (ξ) . {\displaystyle f(\xi)=g(\xi).} Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку .

Примеры

Элементарные функции

Эта функция непрерывна в каждой точке x ≠ 0 {\displaystyle x\neq 0} .

Точка является точкой разрыва первого рода , причём

lim x → 0 − f (x) = − 1 ≠ 1 = lim x → 0 + f (x) {\displaystyle \lim \limits _{x\to 0-}f(x)=-1\neq 1=\lim \limits _{x\to 0+}f(x)} ,

в то время как в самой точке функция обращается в нуль.

Ступенчатая функция

Ступенчатая функция, определяемая как

f (x) = { 1 , x ⩾ 0 0 , x < 0 , x ∈ R {\displaystyle f(x)={\begin{cases}1,&x\geqslant 0\\0,&x<0\end{cases}},\quad x\in \mathbb {R} }

является всюду непрерывной, кроме точки x = 0 {\displaystyle x=0} , где функция терпит разрыв первого рода. Тем не менее, в точке x = 0 {\displaystyle x=0} существует правосторонний предел, который совпадает со значением функции в данной точке. Таким образом, данная функция является примером непрерывной справа функции на всей области определения .

Аналогично, ступенчатая функция, определяемая как

f (x) = { 1 , x > 0 0 , x ⩽ 0 , x ∈ R {\displaystyle f(x)={\begin{cases}1,&x>0\\0,&x\leqslant 0\end{cases}},\quad x\in \mathbb {R} }

является примером непрерывной слева функции на всей области определения .

Функция Дирихле

f (x) = { 1 , x ∈ Q 0 , x ∈ R ∖ Q {\displaystyle f(x)={\begin{cases}1,&x\in \mathbb {Q} \\0,&x\in \mathbb {R} \setminus \mathbb {Q} \end{cases}}}

Определение. Пусть функция у = f(x) определена в точке x0 и некоторой её окрестности. Функция у = f(x) называется непрерывной в точке x0 , если:

1. существует
2. этот предел равен значению функции в точке x0:

При определении предела подчёркивалось, что f(x) может быть не определена в точке x0, а если она определена в этой точке, то значение f(x0) никак не участвует в определении предела. При определении непрерывности принципиально, что f(x0) существует, и это значение должно быть равно lim f(x).

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(x) называется непрерывной в точке x0, если для всех ε>0 существует положительное число δ, такое что для всех x из δ-окрестности точки x0 (т.е. |х-x0|
Здесь учитывается, что значение предела должно быть равно f(x0), поэтому, по сравнению с определением предела, снято условие проколотости δ-окрестности 0
Дадим ещё одно (равносильное предыдущим) определение в терминах приращений. Обозначим Δх = x - x0, эту величину будем называть приращением аргумента. Так как х->x0, то Δх->0, т е. Δх - б.м. (бесконечно малая) величина. Обозначим Δу = f(х)-f(x0), эту величину будем называть приращением функции, так как |Δу| должно быть (при достаточно малых |Δх|) меньше произвольного числа ε>0, то Δу- тоже б.м. величина, поэтому

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(х) называется непрерывной в точке x0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Определение. Функция f(х), не являющаяся непрерывной в точке x0, называется разрывной в этой точке.

Определение. Функция f(х) называется непрерывной на множестве X, если она непрерывна в каждой точке этого множества.

Теорема о непрерывности суммы, произведения, частного

Теорема о переходе к пределу под знаком непрерывной функции

Теорема о непрерывности суперпозиции непрерывных функций

Пусть функция f(x) определена на отрезке и монотонна на этом отрезке. Тогда f(x) может иметь на этом отрезке только точки разрыва первого рода.

Теорема о промежуточном значении. Если функция f(x) непрерывна на отрезке и в двух точках а и b (a меньше b) принимает неравные значения A = f(a) ≠ В = f(b), то для любого числа С, лежащего между А и В, найдётся точка c ∈ , в которой значение функции равно С: f(c) = C.

Теорема об ограниченности непрерывной функции на отрезке. Если функция f(x) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема о достижении минимального и максимального значений. Если функция f(x) непрерывна на отрезке, то она достигает на этом отрезке свои нижнюю и верхнюю грани.

Теорема о непрерывности обратной функции. Пусть функция y=f(x) непрерывна и строго возрастает (убывает) на отрезке [а,b]. Тогда на отрезке существует обратная функция х = g(y), также монотонно возрастающая (убывающая) на и непрерывная.