Методы очистки веществ в лаборатории химия. Выделение и очистка органических соединений методами перекристаллизации и возгонки. Правила работы с кислотами и щелочами

Курсовая работа

Способы очистки химических веществ

по дисциплине: Неорганическая химия


Тверь, 2013


Введение


Разделение и очистка веществ являются операциями, обычно связанными между собой. Разделение смеси на составляющие чаще всего преследует цель получения чистых, по возможности без примесей, веществ. Однако само понятие о том, какое вещество следует считать чистым, еще окончательно не установлено, так как требования к чистоте вещества меняются. В настоящее время методы получения химически чистых веществ приобрели особое значение.

Разделение и очистка веществ от примесей основываются на использовании их определенных физических, физико-химических или химических свойств.

Техника важнейших методов разделения и очистки веществ (перегонка и сублимация, экстракция, кристаллизация и перекристаллизация, высаливание) описана в соответствующих главах. Это - наиболее распространенные приемы, чаще всего используемые не только в лабораторной практике, но и в технике.

В отдельных наиболее сложных случаях используют специальные методы очистки.


1. Очистка веществ


.1 Перекристаллизация


Очистка перекристаллизацией основана на изменении растворимости вещества с изменением температуры.

Под растворимостью понимают содержание (концентрацию) растворенного вещества в насыщенном растворе. Она обычно выражается или в процентах, или в граммах растворенного вещества на 100 г растворителя.

Растворимость вещества зависит от температуры. Эта зависимость характеризуется кривыми растворимости. Данные о растворимости некоторых веществ в воде приведены на рис. 1, а также в таблице растворимости.

Согласно этим данным, если, например, приготовить раствор нитрата калия, взяв 100 г воды, насыщенный при 45º, а затем охладить его до 0º, то должно выпасть 60 г кристаллов KNO3. Если соль содержала малые количества других растворимых в воде веществ, насыщение относительно их не будет достигнуто при указанном понижении температуры, а потому они и не выпадут вместе с кристаллами соли. Ничтожные количества примесей, часто не поддающиеся определению обычными методами анализа, могут лишь увлекаться кристаллами осадка. Однако при повторных перекристаллизациях можно получить практически чистое вещество.

Насыщенный раствор соли, который остается после отфильтрования выпавших кристаллов, тем более чистыми они получаются, так как в этом случае они меньше захватывают маточного раствора, содержащего примеси других веществ. Уменьшению примесей содействует промывание кристаллов растворителем после отделения их от маточного раствора.

Таким образом, перекристаллизация сводится к растворению вещества в подходящем растворителе и последующему выделению его из образовавшегося раствора в виде кристаллов. Это один из распространенных методов очистки веществ от примесей.


1.2 Возгонка


Возгонкой, или сублимацией, называется непосредственное превращение твердого вещества в пар без образования жидкости. Достигнув температуры возгонки, твердое вещество без плавления переходит в пар, который конденсируется в кристаллы на поверхности охлажденных предметов. Возгонка всегда происходит при температуре ниже температуры плавления вещества.

Используя свойство ряда веществ (йода, нафталина, бензойной кислоты, нашатыря и др.) возгоняться, легко получить в чистом виде, если примесь лишена этого свойства.

Для более глубокого изучения явления возгонки необходимо познакомится с диаграммой состояния вещества, представленной на рис. 2. На оси абсцисс отложена температура t (в градусах Цельсия) на оси ординат - давление насыщенного пара p (в м/см3). Аналогичный вид имеет диаграмма состояния воды, так что у нее кривая ТВ наклонена к оси ординат, так как температура замерзания воды по мере возрастания давления понижается.

Кривая ТА выражает зависимость между температурой и давлением насыщенного пара над жидкостью. Все точки кривой ТА определяют условия равновесия между жидкостью и ее насыщенным паром. Например, при 100º вода и пар могут существовать только при давлении 760 мм рт. ст. Если давление больше 760 мм рт. ст., то пар конденсируется в воду (область выше кривой ТА); если давление меньше 760 мм рт. ст., то вся жидкость превращается в пар (область ниже кривой ТА). Кривая ТА лежит выше температуры плавления вещества. Кривая ТБ выражает зависимость между температурой и давлением насыщенного пара над твердым телом. Давление пара твердых тел обычно невелико и в значительной степени зависит от природы тела и температуры. Так, давление паров йода при 16º равно 0,15 мм рт. ст., льда при - 15º равно 1,24 мм рт. ст. Кривая ТБ лежит ниже температуры плавления вещества. Все точки этой кривой определяют условия равновесия между твердым телом и его насыщенным паром.

Кривая ТВ называется кривой плавления и выражает зависимость между температурой плавления вещества и давлением.

Все точки этой кривой определяют условия (температуру и давление), при которых твердое вещество и жидкость находятся в равновесии.

Кривые ТА, ТБ и ТВ разделяют диаграмму состояния вещества на три области: 1 - область существования твердой фазы, 2 - жидкой фазы и 3 - парообразной фазы.

Точка Т, где сходятся все три области, указывает температуру и давление, при которых могут находится в равновесии все три фазы вещества - твердая, жидкая и парообразная. Она называется тройной точкой (Т).

Изменяя температуру или давление, можно изменять состояние вещества.

Пусть точка 1 изображает твердое состояние вещества при давлении выше тройной точки. При нагревании вещества при постоянном давлении точка 1 будет двигаться по пунктирной линии 1-4 и при определенной температуре пересечет кривую плавления ТВ в точке 2. Когда все кристаллы расплавятся, дальнейшее нагревание при постоянном давлении приведет в точку 3 на кривой ТА, где начинается кипение жидкости, вещество перейдет в парообразное состояние. При дальнейшем увеличении температуры тело из состояния 3 перейдет в состояние 4. Охлаждение пара повторит рассмотренные процессы в обратном направлении по той же пунктирной кривой из состояния 4 в состояние 1.

Если взять вещество при давлении ниже тройной точки, например в точке 5, то, нагревая вещество при постоянном давлении, достигнем точки 6, в которой твердое вещество будет переходить в пар без предварительного образования жидкости, т.е. будет иметь место возгонка или сублимация (см. пунктирную линию 5-7). Наоборот, при охлаждении пара при томжелавлении произойдет в точке 6 кристаллизация вещества (также без образования жидкости).

Из изложенного можно сделать следующие выводы:

)В результате нагревания твердого вещества при давлении выше тройной точки оно будет плавиться;

)В результате нагревания твердого вещества при давлении ниже тройной точки оно будет возгоняться;

)Если произвести нагревание при атмосферном давлении, то возгонка наступит в том случае, если давление тройной точки данного вещества выше атмосферного. Так, например, при р=1 ат двуокись углерода возгоняется при - 79º, плавиться же будет при условии, что нагревание проводится при давлении более высоком, чем давление тройной точки.

Следует иметь в виду, что твердые вещества могут переходить в пар при давлении выше тройной точки (поскольку все тверды тела и жидкости частично испаряются при всякой температуре). Так, кристаллический йод при атмосферном давлении ниже температуры плавления переходит в пар фиолетовго цвета, который легко конденсируется в кристаллы на холодной поверхности. Это свойство используют для очистки йода. Однако поскольку давление тройной точки у йода ниже атмосферного, то при дальнейшем нагревании он будет плавиться. Поэтомукристаллический йод при атмосферном давлении не может находится в равновесии со своим насыщенным паром.

В равновесии со своим насыщенным паром могут быть лишь твердые вещества, которые находятся под давлением ниже тройной точки. Но пр таком давлении эти вещества не могут плавиться. Возгоняемые вещества можно перевести в жидкое состояние путем нагревания их при определенном давлении.


1.3 Перегонка


Перегонка, или дистилляция, основана на превращении жидкости в пар с последующей конденсацией пара в жидкость. Этим методом отделяют жидкость от растворенных в ней твердых веществ или менее летучих жидкостей. Так, например, с помощью перегонки очищают природную воду от солей, которые в ней содержаться. В результате получается дистиллированная вода, лишенная этих солей или содержащая их лишь в крайне малых количествах.

Для перегонки небольшого количества жидкости в лабораторных условиях применяют приборы для перегонки.

Жидкость закипает тогда, когда давление ее пара сделается равным внешнему давлению (обычно атмосферному). Чистое вещество при постоянном давлении кипит при строго определенной температуре. Смеси кипят при различных (неопределенных) температурах. Поэтому температура кипения является характеристикой чистоты вещества. Вещество тем чище, чем меньше разница между температурой кипения вещества и температурой, при которой оно перегоняется. (1)

С помощью прибора для перегонки можно разделять смеси жидкостей и получать их в чистом виде. Разделение в данном случае основано на различии состава жидкой смеси и ее насыщенного пара. Это хорошо видно из диаграммы рис. 3, на котором показана зависимость температура кипения смеси двух жидкостей (веществ) А и Б от состава жидкой смеси и состава пара, с которым жидкая смесь находится в равновесии. На оси ординат отложены температуры кипения при постоянном давлении, на оси абсцисс - состав жидкой смеси или пара. Начальная точка на оси абсцисс отвечает чистому веществу А (100% вещества А и 0% вещества Б), конечная точка - чистому веществу Б (100% вещества Б и 0% вещества А), промежуточные точки - различным смесям веществ А и Б, например 50% А и 50% Б; 80% А и 20% Б и т.д. Удобства такого способа изображения очевидны. На диаграмме получают две кривые: кривая жидкости (нижняя) выражает состав кипящей жидкости, и кривая пара (верхняя) вырожает состав пара. Как видно, при всех температурах пар имеет иной состав, чем жидкость, т.е. он всегда богаче более летучим компонентом.

Из диаграммы следует, что составу смеси в точке В при температуре кипения t отвечает состав пара в точке Г*, а составу смеси в точке Д при температуре кипения tотвечает состав пара в точке Е, т.е. с увеличением содержания жидкости А в смеси увеличивается содержание А в парах. Это впервые установлено Д.П. Коноваловым в 1881 г.: при повышении концентрации вещества в жидкости увеличивается его содержание в парах (1-й закон Д.П. Коновалова). Поэтому приперегонки такой смеси жидкостей в первых порциях дистиллята будет больше содержаться жидкости с большим давлением пара (т.е. низкокипящей), чем в последующих порциях. В перегонной же колбе в процессе перегонки увеличивается количество высококипящей жидкости.

Такая перегонка, когда дистиллят отбирается при различных интервалах температур и в различные приемники, называется дробной, или фракционной, перегонкой. Жидкости в приемниках, отобранные в определенных интервалах температур, называются фракциями.

Повторяя несколько раз дробную перегонку, можно почти полностью разделить смесь жидкостей и получить компоненты смеси в чистом виде.

Более полному и быстрому разделению смесейжидкостей путем фракционной перегонки благоприятствует применение дефлегматоров или ректификационных колонок. В них частично конденсируется пар до отвода в холодильник, в результате чего в отгоняющийся жидкости сильно увеличивается количество низкокипящей фракции. Одна такая перегонка (т.е. с применением ректификационной колонки или дефлегматора) заменяет несколько последовательных перегонок, осуществляемых с помощью прибора для перегонки.

Перегонка с дефлегматором, а также другие приемы перегонки, как-то: перегонка с паром, перегонка под уменьшенным давлением - рассматриваются в руководствах и практикумах по органической химии.


2. Очистка газа

растворимость вещество перекристаллизация сублимация

Очистка газа от газов-примесей достигается путем пропускания его через такие вещества, которые поглощают эти примеси. Например, при получении в приборе Киппа двуокиси углерода вместе с ней выходят примеси - хлористый водород (от соляной кислоты) и пары воды. Если двуокись углерода с этими примесями пропустить сначала через промывалку с водой (для поглощения хлористого водорода), а затем через хлоркальциевую трубку (для поглощения паров воды), то СО2 получится практически чистой.

Для определения степени чистоты вещества применяются физические и химические методы исследования. К первым относятся: для жидких веществ - определение плотности, температуры кипения, показателя преломления; для твердых веществ - определение температуры плавления и ряд других; ко вторым методам относятся химические анализы - качественный и количественный - на содержание примесей.

Абсолютно чистых веществ нет. Применяемые в лабораторной практике вещества имеют различную степень чистоты. Максимально допустимое количество примесей в веществе устанавливается общесоюзным стандартом (ГОСТом).

Для лабораторных работ по неорганической химии и качественному анализу пригодны вещества с маркировкой х.ч. (содержат 10-5 - 10-7% примесей) и ч. д. а. (содержат около 10-4% примесей).

Новая техника потребовала применения веществ особой чистоты - ультрачистых или особо чистых - с содержанием примесей порядка 10-5 - 10-7%. Для получения их применяются специальные методы очистки. Так, для глубокой очистки полупроводниковых материалов широко используется метод зонной плавки, основанный на неодинаковом распределении примесей между жидкой и твердой фазами вследствие их неодинаковой растворимости. Этим методом удается получить германий с содержанием основного элемента не менее 99,99999%.

Методы получения особо чистых веществ рассматриваются в специальной литературе.


3. Специальные методы очистки веществ


3.1 Диализ


Диализ может быть использован для разделения и очистки веществ, растворенных в воде или в органическом растворителе. Этим приемом чаще всего пользуются для очистки высокомолекулярных веществ, растворенных в воде, от примесей низкомолекулярных или от неорганических солей. (2)

Для очистки методом диализа необходимы так называемые полупроницаемые перегородки, или мембраны» Особенность их заключается в том, что они имеют поры, позволяющие проходить через них веществам, размер молекул или ионов которых меньше размеров пор, и задерживать вещества, размеры молекул или ионов которых больше размеров пор мембраны. Таким образом, диализ можно рассматривать как особый случай фильтрования.


Рис. 4. Диализатор с мешалкой.


В качестве полупроницаемых перегородок или мембран могут быть использованы пленки из очень многих высокомолекулярных и высокополимерных веществ. В качестве мембран применяют пленки из желатина, из альбумина, пергамент, пленки из гидратцел-люлозы (типа целлофана), из эфпров целлюлозы (ацетат, пи грат н пр.), из многих продуктов полимеризации п конденсации. Из неорганических веществ находят применение: иеглазуроваииый фарфор, плитки из некоторых сортов обожженной глины (типа коллоидных глин, как бентонит), прессованное мелкопористое стекло, керамика и др.

Основными требованиями к мембранам являются: 1) нерастворимость в том растворителе, на котором приготовлен диализируемый раствор; 2) химическая инертность по отношению как к растворителю, так и к растворенным веществам; 3) достаточная механическая прочность.

Многие мембраны способны набухать в воде или другом растворителе, теряя при этом механическую прочность. Набухшая пленка может быть легко повреждена или разрушена. В подобных случаях пленку для диализа изготовляют на какой-нибудь прочной основе, например на ткани, инертной к растворителю (хлопчатобумажная, шелковая, из стекловолокна, из синтетического волокна и др.), или па фильтровальной бумаге. Иногда для придания мембранам механической прочности их укрепляют металлическими сетками (армирование) из соответствующего металла (бронза, платина, серебро и пр.).

Для получения различной пористости у мембран из эфиров целлюлозы или из некоторых других высокополимерных веществ в соответствующие лаки вводят различное количество воды. При высыхании лаковой пленки получается мембрана молочного цвета, имеющая заданную пористость (об этом см. гл. 9 «Фильтрование»).

Для диализа применяют приборы называемые диализаторами (рис. 4). Они могут иметь различную конструкцию. Техника работы с диализаторами очень проста. Полупроницаемая мембрана разделяет прибор обычно на две части. В одну половину прибора наливают раствор, подлежащий диализу, а в другую половину - чистый растворитель, причем последний обычно обновляют (постоянный ток жидкости). Если чистый растворитель не менять, то концентрации проходящих через мембрану веществ с обеих сторон ее в конце концов уравновесятся и диализ практически остановится. Если же растворитель все время обновлять, то из диализируемого раствора можно практически удалить все растворимые вещества, способные проникать через мембрану.

Скорость диализа неодинакова для различных веществ и зависит от ряда условий и свойств вещества, которое очищают. Повышение температуры раствора и обновление растворителя способствуют ускорению диализа.

Во многих случаях вместо обычного диализа применяют электродиализ. Применение электрического тока при диализе ускоряет процесс и создает ряд других преимуществ.

Осаждение малорастворимых веществ. Этим приемом широко пользуются для аналитических целей, получая осадки, содержащие только какое-нибудь одно, неорганическое или органическое, вещество. Полученный осадок может быть дополнительно очищен или промыванием («Фильтрование», или повторным переосаждением после растворения осадка, или экстрагированием соответствующими растворителями в определенных для каждого случая условиях.

Аппаратура, применяемая для проведения этого метода, зависит от свойств веществ и свойств растворителей. Часто операцию можно проводить просто в стакане или в колбе. В других же случаях собирают герметизированную аппаратуру, подобную той, которая описана в гл. 10 «Растворение». Осадки отфильтровывают, промывают и затем подвергают дальнейшей обработке (перекристаллизации, сушке и т. д.).

Отделение малора«гворимого осадка от маточного раствора можно достичь отстаиванием с последующим промыванием осадка с применением декантации или центрифугирования. Чем продолжительнее отстаивание, тем больше уплотняется слой осадка. Однако не рекомендуется давать осадкам отстаиваться слишком долго, так как со временем между осадком и маточным раствором могут возникать побочные процессы (адсорбция других ионов, комп-лексообразование с растворителем), затрудняющие последующую "обработку отделяемого осадка.

3.2 Комплексообразование


Комплексообразование является одним из приемов выделения чистых веществ, особенно неорганических. Комплексные соединения могут быть или труднорастворимыми в воде, но легкорастворимыми в органических растворителях, или наоборот. В первом случае осадки обрабатывают, как описано выше. Если же комплексное соединение легко растворяется в воде, его можно извлечь в чистом виде из водного раствора путем экстрагирования подходящим органическим растворителем или же разрушить комплекс тем или иным путем. (3)

Приемом комплексообразования можно выделить металлы в очень чистом виде. Это особенно касается редких и рассеянных металлов, которые могут быть выделены в виде комплексов с органическими веществами.

Образование летучих соединений. Этим приемом можно пользоваться в том случае, если образуется летучее соединение только выделяемого вещества, например какого-либо металла. В том случае, если одновременно образуются летучие соединения примесей, этот прием применять не рекомендуется, так как освобождение от летучих примесей может оказаться затруднительным. Во многих случаях образование летучих галогенидов (хлористые или фтористые соединения) некоторых веществ может оказаться очень эффективным как метод очистки, особенно в сочетании с вакуум-перегонкой. Чем ниже температура возгонки или кипения интересующего нас вещества, тем легче его отделить от других и очистить фракционной перегонкой или диффузией.

Скорость диффузии газообразных веществ через полупроницаемые перегородки зависит от плотности и молекулярной массы очищаемого вещества и почти обратно пропорциональна им,


3.3 Зонная плавка


Зонную плавку можно рассматривать как частный случай экстракции расплавленным веществом, когда твердая фаза вещества находится в равновесии с его жидкой фазой. Если растворимость в жидкой фазе какой-либо примеси, содержащейся в очищаемом веществе, отличается от растворимости в твердой фазе, то очистка от этой примеси теоретически возможна *. Этот метод особенно ценен для очистки таких соединений (преимущественно органических), которые имеют низкое давление паров или разлагаются при перегонке. (4) Для соединений, имеющих низкую теплопроводность, зону плавления можно создать, применяя высокочастотный нагрев с диэлектрическим сопротивлением. Метод зонной плавки дает возможность полностью использовать исходные вещества и позволяет получать большие монокристаллы органических веществ и некоторых металлов (например, алюминия, германия и др.).

В простейшей форме метод зонной плавки в применении к металлам состоит в медленном перемещении расплавленной зоны вдоль стержня из металла.

Метод зонной плавки может найти широкое применение для приготовления чистых органических соединений. (5)

В настоящее время делаются попытки применить метод зонной плавки для очистки жидкостей. Этот метод оказался применим для"очистки только предварительно замороженной жидкости. Для этого жидкость помещают в узкую и длинную стеклянную лодочку (шириной 12 мм, длиной 110 мм) и замораживают при -30° С, с помощью циркуляционного охлаждающего устройства, работающего на смеси твердой углекислоты с ацетоном. Замороженную жидкость в лодочке медленно протягивают с помощью моторчика Уоррена со скоростью 1 см/ч через несколько последовательных зонных нагревателей, расположенных на расстоянии около 1,8 см друг от друга и представляющих собой витки нихро.мовой проволоки диаметром 0,5 мм (0,5 ом/м) в пазах небольших керамических блоков. Силу тока подбирают такой, чтобы температура расплавленных узких зон в замороженной жидкости была 3--4° С. Расплавленные зоны, перемещаясь одна за другой, увлекают за собой примеси, имевшиеся в жидкости. Примеси концентрируются в конечной части бруска замороженной жидкости. Таким приемом можно очищать водные и неводные растворы и выделять растворенные или только тонко диспергированные вещества. (6)

Аппаратурное оформление метода зонной плавки зависит от свойств взятых веществ, и рекомендовать какую-либо стандартную аппаратуру в этом случае трудно. (7)


3.4 Хроматография


Метод хроматографии особенно важен для концентрирования веществ, содержание которых в исходном растворе очень мало, а также для получения чистых препаратов. При помощи этого метода были получены редкоземельные и заураповые элементы высокой чистоты. Многие фармацевтические и органические препараты очищают и получают в чистом виде при помощи этого метода. Почти во всех случаях, когда поставлена задача очистки или отделения какого-либо вещества из смеси, находящейся в растворе, хроматография и ионный обмен могут оказаться надежными методами.

Для ионного обмена применяют так называемые иониты, представляющие собой неорганические или органические адсорбенты (преимущественно смолы разных марок). По своим химическим свойствам они разделяются на следующие группы: катнониты, ани-ониты и амфолиты. Катиониты обменивают катионы. Аниониты обладают способностью обменивать анионы. Амфожгты способны обменивать как катионы, так и анионы-в зависимости от рН среды и свойств вещества, которое должно быть поглощено ионитом. (8)

Иониты способны к ионному обмену до полного насыщения их поглощаемым ионом. Отработанные иониты регенерируют путем промывания катионитов кислотой, анионитов-щелочами.* В элюате (жидкость, получаемая при промывании ионита) будут находиться адсорбируемые ионитом ионы.

Для разделения и фракционирования полимеров предложен способ фильтрации их растворов через гель, названный «сефадекс» (Швеция). Этот способ называют г е л ь - ф и л ь т р а ц и е й. По существу он является хроматографическим разделением высокомолекулярных веществ на колонке.

Сефадекс выпускается в виде мелких зерен, набухающих в воде. (9)

При использовании других веществ границы молекулярных весов могут отклоняться от приведенных значений в ту или иную сторону. Так, для белковых веществ диапазоны молекулярных весов шире, чем в случае полисахаридов. Для использования сефадекса сконструирована хро-матографическая колонка с рубашкой; колонка выполнена из боросиликатного стекла. (10)

Вначале сефадекс смешивают с водой, взмучивают полученную смесь, вливают в колонку и дают осесть. Затем в колонку добавляют концентрированный раствор исследуемого вещества так, чтобы не взмучивался верхний слой сефадекса. Равновесие устанавливается очень быстро, поэтому скорость вымывания по сравнению с обычными иопитами может быть большой. Фракции контролируют или спектрофотометрически (органические полимеры), или по электропроводности (растворы неорганических веществ). Метод гель-фильтрования полностью заменяет диализ и электродиализ. При его помощи можно очень тонко фракционировать полимеры, которые мало отличаются между собой по молекулярным массам.


4. Экспериментальная часть


Очистка медного купороса перекристаллизацией

Пользуясь таблицей растворимости сульфата меди (приложение №1), вычислить, сколько воды и медного купороса надо взять для приготовления такого количества насыщенного при 80ºС раствора соли, из которого при последующем охлаждении до 0ºС выделилось бы 10г CuSO4·5H2O.

Медный купорос загрязнен небольшим количеством хлорида калия, а также нерастворимыми примесями (песок, кусочки угля). Поэтому его нужно взять на 10% больше вычисленного.

Отмерить цилиндром вычисленный объем дистиллированной воды, вылить в микро стакан емкостью 50мл, нагреть до начала кипения и растворить при помешивании стеклянной палочкой навеску медного купороса.

Убедится, что в приготовленном растворе содержаться хлорид-ионы. Для этого в коническую пробирку налить 3 капли раствора, добавить 1 каплю раствора AgNO3 и 2 капли азотной кислоты. Выпадает белый осадок.

После испытания на хлорид-ион нагретый до кипения раствор медного купороса отфильтровать через воронку для горячего фильтрования, изображенную на рис. 4 (отделение нерастворимых примесей). Насыщенный раствор при таком фильтровании не будет охлаждаться, а значит вещество не будет кристаллизоваться на фильтре и тем самым затруднять процесс фильтрования. Воронка нагревается включением электрического тока.

Для ускорения фильтрования рекомендуется применять складчатый фильтр, который должен быть приготовлен заранее. Метод изготовления гладких (простых) фильтров виден из рис. 5. Складчатый фильтр (рис. 6) изготовляют следующим образом: сначала делают гладкий фильтр большого размера, затем складывают его пополам и каждую половину сгибают несколько раз в одну и другую сторону, подобно гармонике. Фильтр не должен доходить до краев воронки на 5 - 10 мм.

Помешивая фильтрат стеклянной палочкой, охладить его сперва до комнатной температуры, а потом до 0ºС (в кристаллизаторе с водой и льдом).

Выпавшие кристаллы соли отделить от маточного раствора фильтрованием. Лучше всего фильтрование проводить при пониженном давление на воронке Бюхнера. Это сильно ускоряет процесс фильтрования. Воронку Бюхнера с резиновой пробкой вставляют в колбу Бюнзена (толстостенная колба с отростком). На пластинку воронки с порами кладут кружок фильтровальной бумаги, которую смачиваю водой для более плотного прилегания к пластине, наполняют воронку фильтруемым раствором, а боковой отросток соединяют с водяным насосом. Фильтрование с помощью воронки Бюхнера показано на рис. 7.

Снять кристаллы соли с воронки и отжимать их между листками фильтровальной бумаги до тех пор, пока они не перестанут прилипать к сухой стеклянной палочке. Взвесить на технохимических весах полученную соль. Определить в процентах выход соли, принимая вычисленное количество CuSO4·5H2O, которое теоретически должно было выделиться, за 100%.

Раствор очищенной соли и маточный раствор испытать на присутствие хлорид-иона.


4.1 Пример решения задачи


Сколько граммов воды и медного купороса нужно взять для приготовления такого количества насыщенного при 80ºС раствора, который при охлаждении до 0ºС выделит 5г медного купороса?

Решение: Из таблицы растворимости (приложение 1) находим, что в 100г насыщенного раствора нужно взять x г CuSO4·5H2O. Если при 0ºС выпадает 5г медного купороса, то в растворе останется (x-5)г. В пересчете на безводную соль это составит (x - 5) : или г. Вычисляем количество раствора, содержащее


г соли:


12,9 г безводной соли содержаться в 100г раствора


a = г.


При нагревании до 80? С получаем насыщенный раствор, в количестве



В нем будет содержаться медного купороса



Это количество равно x. Тогда



Отсюда x=25,3г.

При 80? С вычисленное количество соли будет насыщать


г раствора


Воды необходимо взять


46,5 г - 25,3 г = 21,2 г, или 21,2 мл.


Эту задачу решить иным путем, сделав предварительный расчет количества соли, приходящейся на одно и то же количество воды.

9 г CuSO4соответствуют 34,9?1,56=54,44 г CuSO4?5H2O, а 12,9 г CuSO4 - 20,12CuSO4?5H2O. В насыщенном растворе:

При 80? С на 54,44 г CuSO4?5H2O приходится 45,56 г H2O

С20,12 CuSO4?5H2O79,88 H2O

СXCuSO4?5H2O45,56 H2O



При охлаждении раствора от 80 до 0? С получим:

44 - 11,47 = 42,97 г медного купороса.

Количество воды и соли находим из соотношения:

97 г CuSO4?5H2O - 45,56 г H2O

5 CuSO4?5H2O - yH2O

42,97 г CuSO4?5H2O выпадает в осадок из 54,44 г CuSO4?5H2O

5 CuSO4?5H2OzCuSO4?5H2O

Можно и так:

гCuSO4?5H2O соответствует CuSO4. Пусть при 80? С надо взять x г CuSO4 вyг раствора. Тогда

При 0?С после выпадения 5 гCuSO4?5H2O или 12,82 CuSO4вес xуменьшится на 12,82 г. Останется (x - 12,82)г CuSO4 в (y - 20) г раствора. Значит

Но x=0,349y.

Тогда Откуда y=46,54 г раствора. X = 0,349?46,54г = 16,24 г CuSO4или 25,3 г CuSO4?5H2O. Воды надо взять: 46,54 г - 25,33 г = 21,2 г или 21,2 мл.


Заключение


В данной курсовой были рассмотрены одни из самых используемых способов очистки веществ в химии (перекристаллизация, возгонка, перегонка и др.).

Эти методы достаточно эффективны и часто применимы, их плюс заключается в дешевизне оборудования необходимого для работы и скорости проведения очистки, но у всех них есть один недостаток, ни одним из предложенных способов нельзя получить сверх чистое вещество.

Наша наука не стоит на месте и находятся новые методы очистки веществ с помощью более сложного и точного оборудования. В данной работе были рассмотрены хроматография, диализ, комплексообразование и др. С помощью этих методов мы можем получить сверх чистое вещество. Но они все еще остаются дорогостоящими и ни один из них не является универсальным.

Тема очистки веществ будет оставаться актуальной, так как постоянно будут разрабатываться новые способы получения сверх чистых веществ, которые все более востребованы в промышленности и научных опытах.


Список использованных источников и литературы


1.Пфаин В. Дж. Зонная плавка/ В. Дж. Пфаин - М. : Металлургиздат, 1960. - 384 с.

2.Херингтон E. Зоиная плавка органических веществ / Е. Херингтон; пер. с англ. - М. : Мир, 1965. - 547 с.

Абакумов Б. И. Установка для зонной плавки / Б. И. Абакумов, Э. Е. Коновалов. - М. : РЖХим, 1964, 367 с.

Шплкин А. И. Установку для бестигельной зонной плавки веществ с малым поверхностным натяжением / И. А. Шплкин, А. А. Ки-лиев. - М. : РЖХим, 1964. - 230 с.

Муссо H. О новых методах разделения в химии / Н. Муссо; пер. с англ. -М. : РЖХим, 1958. - 654 с.

Линстед Р. О хроматографических методах очистки и выделения веществ / Р. Линстед; пер. с англ. - М. : Издатинлит, 1959. - 476 с.

Горшков В. И. / И. В. Горшков, В. А. Федоров, А. М. Толмачев. - М. : РЖХим, 1966. - 187 с.

Нийсел В. О методе разделения растворенных веществ, основанном на различии в скоростях диффузии / В. Нийсел; пер. с англ. - М. : РЖХим, 1964. - 479 с.

Шилд-Кнетч H. Разделения кристаллизующихся веществ / Н. Шилд-Кнетч; пер. с англ. - М. : РЖХим, 1964. - 169 с.

Малей Л. Применение хроматографии, основанной на проникновении вещества в гель, к веществам с низким и высоким молекулярным весом / Л. Малей; пер. с англ. - М. : РЖХим, 1965. - 540 с.

Наиболее распространенными методами очистки являются для твердых веществ перекристаллизация и возгонка (сублимация), для жидкостей – фильтрование и перегонка (дистилляция), для газов – поглощение примесей различными веществами.

Перекристаллизация - один из важнейших методов очистки твердых веществ. По сравнению с другими методами она наиболее универсальна, обеспечивает при правильном проведении высокую степень очистки, хотя и связана иногда со значительными потерями очищаемого продукта.

Перекристаллизация основана на различной растворимости очищаемого вещества в горячем и холодном растворителе и включает в себя следующие этапы:

Выбор растворителя;

Предварительное удаление примесей;

Приготовление насыщенного горячего раствора;

Отделение нерастворившихся примесей, обработка раствора адсорбентами, отделение адсорбента;

Охлаждение раствора;

Отделение образовавшихся кристаллов;

Промывка кристаллов чистым растворителем;

Сушка.

Под растворимостью понимают содержание растворенного вещества в насыщенном растворе. Растворимость обычно выражается в граммах растворенного вещества на 100 граммов растворителя, иногда на 100 г раствора. Зависимость растворимости веществ от температуры выражается кривыми растворимости. Если соль содержала малые количества других растворимых в воде веществ, насыщение относительно последних не будет достигнуто при понижении температуры, поэтому они не выпадут в осадок вместе с кристаллами очищаемой соли. Процесс перекристаллизации состоит из нескольких этапов: приготовления раствора, фильтрования горячего раствора, охлаждения, кристаллизации, отделения кристаллов от маточного раствора. Чтобы перекристаллизовать вещество, его растворяют в дистиллированной воде или в подходящем органическом растворителе при определенной температуре. В горячий растворитель небольшими порциями вводят кристаллическое вещество до тех пор, пока оно перестанет растворяться, т.е. образуется насыщенный при данной температуре раствор. Горячий раствор отфильтровывают на воронке для горячего фильтрования. Фильтрат собирают в стакан, поставленный в кристаллизатор с холодной водой со льдом или с охлаждающей смесью. При охлаждении из отфильтрованного насыщенного раствора выпадают мелкие кристаллы, так как раствор при более низкой температуре становится пересыщенным. Выпавшие кристаллы отфильтровывают на воронке Бюхнера, затем переносят их на сложенный вдвое лист фильтровальной бумаги. Стеклянной палочкой или шпателем распределяют кристаллы ровным слоем, накрывают другим листом фильтровальной бумаги и отжимают кристаллы между листами фильтровальной бумаги. Операцию повторят несколько раз. Затем кристаллы переносят в бюкс. До постоянной массы вещество доводят в электрическом сушильном шкафу при температуре 100-105 0 С. Температуру в шкафу до этого предела следует повышать постепенно. Для получения очень чистого вещества перекристаллизацию повторяют несколько раз.

Выбор растворителя. Успех перекристаллизации определяется, прежде всего правильным выбором растворителя. Он должен хорошо растворять очищаемое соединение при нагревании и плохо на холоде. Примеси либо вообще не должны растворяться (в этом случае их удаляют фильтрованием горячего раствора), либо должны обладать высокой растворимостью даже при низкой температуре. Пригодным можно считать лишь химически инертный по отношению к очищаемому веществу растворитель.

Занятие 8 ХИМИЧЕСКИЕ РЕАКТИВЫ И СПОСОБЫ ИХ ОЧИСТКИ

Значение темы

Проведение анализа в лаборатории невозможно без использования химических веществ, называемых реактивами. Количество различных веществ, используемых в анализе огромно. Знания свойств реактивов, правил их хранения и работы с ними необходимо в каждодневной работе медицинского лабораторного техника. В лаборатории может не оказаться реактива нужной степени чистоты. Кроме того, многие соли, содержащие кристаллизационную воду, при хранении теряют часть этой воды. Гигроскопичные вещества при хранении поглощают пары воды из воздуха. Такие реактивы, как спирт, бензол, эфир, содержат большее или меньшее количество воды. Во всех этих случаях реактивы очищают.

знать:

Классификацию химических реактивов;

Правила хранения и пользования химическими реактивами;

Методы очистки химических реактивов от примесей;

Устройство дистиллятора, правила работы.

уметь:

Проводить очистку химических реактивов методом возгонки, перекристаллизации;

Демонстрировать работу дистиллятора.

Химические реактивы (реагенты химические, или химреактивы) – это химические вещества, которые используют для анализа в исследовательских, лабораторных работах. В теории для проведения исследований было бы здорово использовать абсолютно чистые химреактивы (состоящие из одного вида частиц), но на практике чистым реагентом считает такое вещество, в котором присутствует наименьшее количество примесей, которого можно достичь при современном развитии науки и техники. Таким образом, все химические реактивы можно классифицировать по степени их чистоты.

КЛАССИФИКАЦИЯ РЕАКТИВОВ

    По степени чистоты

Обозна-чение

Характеристика

цвет полосы на этикетке

Технический

тех.

Содержание основного вещества от 70 %. Такие реактивы содержат много примесей и применяются для выполнения вспомогательных работ.


светло-коричневая

Очищенный

ч.

содержание основного вещества от 98%. Такие реактивы содержат всего 2 % примесей.

зеленая

Чистый для анализа

ч.д.а.

содержание основного вещества около 99 %, % зависит от сферы применения. С помощью таких реактивов проводятся точные аналитические исследования. Реактивы содержат 0,5-1 % примесей.

синяя


химически чистый


х.ч.

Содержание основного компонента составляет 99 % и выше. Они содержать не более 0,001-0,00001 % примесей.

красная

Для специальных целей:

К ним относятся вещества высокой чистоты. Содержание основного компонента составляет почти 100 %. Содержание примесей составляет 10 -5 -10 -10 %.

Спектрально чистые

с.п.ч.

Эталонной чистоты

э.ч.

Коричневая

Особо чистые

о.ч.

Желтая

    По употреблению

Общеупотребительные индикаторы

Красители для микроскопии,

Красители для хроматографии,

Реактивы для дезинфекции.

III. По свойствам

А) Гигроскопичные (влагочувствительные) реактивы. Поглощение влаги может Поглощение влаги может происходить при негерметичной упаковки реактива и может привести не только к увлажнению вещества, но и изменению его свойств.

Б) Светочувствительные реактивы. Некоторые вещества под действием света изменяются, вступая в реакции окисления, восстановления, изомеризации и т.п.

В) Пожароопасные реактивы. К ним относятся такие соединения, которые способны от кратковременного контакта с источником зажигания (искра, пламя, нить накала) или самопроизвольно воспламеняться.

Г) Ядовитые реактивы. Многие химические реактивы в большей или меньшей степени ядовиты. Особенно опасно систематическое попадание в организм человека в течение длительного времени соединений, вызывающих хронические отравления (соединения ртути, мышьяка, синильной кислоты, ментол и др.). Даже соединения, которые используются каждодневно в больших количествах, могут быть токсичными. Работать с такими веществами нужно только в вытяжном шкафу.

Примеры реактивов, относящихся к различным группам

Группы реактивов

Примеры реактивов

Условные обозначения

Гигроскопичные

реактивы

гидроксиды калия и натрия, хлорид аммония, ангидриды кислот и др.

Светочувствительные реактивы

раствор йода, пероксида водорода, соединения серебра.

Пожароопасные

реактивы

легко воспламеняющиеся жидкости (спирт, ацетон, бензол, эфиры и др.)

Ядовитые реактивы

соединения ртути, мышьяка, синильной кислоты, ментол и др.

Этикетки химических реактивов

Все химические вещества, находящиеся в лаборатории должны быть снабжены этикетками.

Без этикетки вещество хранить нельзя!

Согласно ГОСТ 3885-73, реактивы (препараты) должны быть упакованы в соответствующую потребительскую тару, герметически упакованы и снабжены стандартной этикеткой.

Для реактивов каждой классификации этикетка на таре должна быть определенного цвета или на ней должна быть цветная полоса.

При наличии у реактивов ядовитых, огнеопасных, взрывчатых свойств наклеивается отдельная этикетка с надписью определенного цвета.

Определенные вещества помечаются на этикетках рисунками:

Способы написания этикеток:

    Печатные этикетки

    Универсальные с клеящей лентой

    Временные (карандашом по стеклу)

    Масляными красками или лаком

    Парами фтороводородной кислоты – «вечные этикетки».

Правила хранения химических реактивов

В лабораторном помещении должны храниться небольшие запасы химических реактивов. Их держат в банках, склянках с пришлифованными стеклянными пробками или пластмассовыми крышками из полиэтилена, а наиболее летучие (хлороводородная кислота, раствор аммиака, бром) – на специальных полках в вытяжном шкафу. Общий запас одновременно хранящихся в каждом рабочем помещении лаборатории огнеопасных жидкостей не должен превышать суточные потребности. Склянки, в которых содержится более 50 мл. ЛВЖ, должны храниться в железных ящиках для горючего с плотно закрывающейся крышкой, со стенками и дном, выложенными асбестом. Светочувствительные реактивы хранят в темных склянках или банках, обернутых черной бумагой. Сильные яды должны храниться в опечатанных шкафах и сейфах. Хранить реактивы допускается лишь в специально оборудованных и хорошо вентилируемых помещениях, в строгом порядке. Не разрешается совместное хранение реактивов, способных взаимодействовать друг с другом, например, окислители и восстановители, кислоты и щелочи.

Обособленно следует хранить следующие группы реактивов:

Взрывчатые вещества,

Горючие и сжиженные газы,

Самовозгорающиеся или самовоспламеняющиеся вещества,

Яды.

Реактивы, не требующие специальных условий хранения, размещают на стеллажах. Неорганические вещества расставляют по общеизвестной классификации: простые вещества (металлы, неметаллы), оксиды, основания, соли. Соли лучше расставлять по катионам. Кислоты хранят отдельно. Органические вещества удобно расставлять по алфавиту. Нормы и правила хранения реактивов разрабатываются и утверждаются отдельно в каждой организации в зависимости от особенностей работы, наличия оборудования и складских помещений.

При хранении химических веществ не маловажен выбор пробки . О пробках и обращении с ними нужно помнить следующее:

    Выбор пробки для химической посуды осуществляют в зависимости от реактива. Выбирают пробку:

    Прежде надо подобрать пробку к сосуду, а уже потом помещать в него вещества. Пробки от разных сосудов нельзя путать; у каждого сосуда должна быть своя пробка, особенно это относится к стеклянным пробкам.

    Если сосуд с притертой пробкой пуст, то обязательно надо положить кусочек бумаги между горлышком и пробкой.

    Если корковой пробкой надо закрыть сосуд с кислотой или щелочью, то вначале пробку следует обработать.

    Хранить щелочи в сосудах с притертыми пробками нельзя, так как в этом случае пробку неизбежно "заест".

Правила пользования реактивами

1. Главное требование к реактивам - их чистота. Реактив нужно беречь от загрязнения.

2. Нельзя ссыпать и сливать реактив из посуды, в которой проводится реакция, обратно в посуду для хранения.

3. Нельзя путать пробки от посуды с разными реактивами, а также хранить реактивы без пробок. Необходимо строго учитывать, какой пробкой закрывать бутылки или склянки. Резиновыми пробками нельзя закрывать склянки с такими реактивами, как бензин, керосин, бензол, толуол и другие жидкие углеводороды, а также дихлорэтан, эфир и др., от паров которых резина набухает и размягчается.

4. Нельзя брать реактив руками.

5. Банки с летучими веществами должны открываться в момент непосредственного пользования ими.

6. Работы с ядовитыми и плохо пахнущими, воспламеняющимися веществами проводят в вытяжном шкафу.

7. При необходимости определения запаха осторожно направлять пары вещества рукой от сосуда к себе.

8. Ядовитые и едкие реактивы после проведения работы сливать в специальные склянки.

Правила работы с кислотами и щелочами

    Все концентрированные растворы должны храниться в специальных бутылях с притертыми пробками, поверх которых необходимо надевать притертый колпачок. Щелочи рекомендуется хранить в широкогорлых банках темно-оранжевого стекла, закрытых корковыми или полиэтиленовыми пробками и залитых слоем парафина.

    Кислоты и щелочи должны храниться на нижних полках шкафов отдельно от реактивов и красок.

    Посуда для хранения ядовитых веществ, щелочей и кислот должна иметь четкие надписи (чернилами по стеклу или другим способом).

    Биксы, банки, бутыли с летучими веществами необходимо открывать только в момент непосредственного пользования ими.

    5. Открывать сосуды с концентрированными кислотами и щелочами и летучими веществами и готовить растворы из них разрешается только в вытяжном шкафу с включенной принудительной вентиляцией.

    Щелочи следует брать из банки шпателем.

    Бутыли с кислотами, щелочами и другими едкими веществами следует переносить вдвоем в специальных ящиках или корзинах или перевозить на специальной тележке.

    При разбавлении крепких кислот следует кислоту наливать в воду, а не наоборот.

    При работе с кислотами, щелочами запрещается насасывать жидкость в пипетку ртом. Для набора жидкости следует использовать резиновые груши с трубками.

    Растворы для нейтрализации концентрированных кислот и щелочей должны находиться на стеллаже (полке) в течение всего рабочего дня.

    Посуду, содержащую растворы едких веществ, во избежание ожогов рук следует мыть в резиновых перчатках.

Техника безопасности при работе с химическими реактивами

  1. Опыты с ядовитыми и плохопахнущими веществами проводят в вытяжном шкафу.

    Для определения запаха газа или жидкости осторожно вдыхают воздух, слегка направляя испарения рукой от сосуда к себе.

    Пр наливании реактивов не наклоняться над сосудом во избежание попадания брызг на лицо и одежду.

    Все опыты с воспламеняющимися веществами проводят в вытяжном шкафу.

МЕТОДЫ ОЧИСТКИ ХИМИЧЕСКИХ РЕАКТИВОВ

Если в лаборатории отсутствует химический реактив определенной степени чистоты, его приходится дополнительно очищать. Самыми распространенными методами очистки являются:

фильтрование,

центрифугирование,

перекристаллизация,

перегонка (дистилляция),

возгонка (сублимация),

абсолютирование (высушивание).

Очистка методом декантации

Декантация – это отстаивание твердых частиц, содержащихся в жидкости, под воздействием силы тяжести. После декантации осветленная жидкость отделяется от осадка твёрдых частиц; при этом происходит очистка от примесей. Достоинство метода – его простота, а недостаток – замедленное отстаивание мелких частиц. Значительно быстрее происходит разделение смеси жидких и твердых частиц путем центрифугирования.

Очистка центрифугированием

Центрифугирование основано на использовании центробежной силы, возникающей при быстром вращении. В обычных лабораторных центрифугах скорость вращения составляет около 1000 оборотов в минуту, а в специальных (ультрацентрифугах) – до 6000 об/мин. Искусственная сила тяжести в центрифугах превышает земное притяжение в де-сятки-сотнитысяч раз, вследствие чего отстаивание твёрдых частиц происходит за несколько минут.

Очистка фильтворанием

Фильтрование заключается в пропускании суспензии через пористую перегородку – фильтр, задерживающий твердые частицы. Фильтром может служить специальная бумага, ткань, пористая керамика, пористое стекло, слой песка и другие пористые материалы. При обычных условиях фильтрование идет медленно. Для ускорения его проводят под вакуумом: в приемнике для жидкости с помощью насоса создают разрежение, вследствие чего на жидкость над фильтром начинает действовать атмосферное давление, и чем больше разность давлений (атмосферного и в приемнике), тем быстрее идет фильтрование.

Очистка методом перекристаллизации

Перекристаллизация применяется для очистки различных растворимых солей и многих твердых органических веществ. Перекристаллизация – один из наиболее распространенных методов очистки и разделения кристаллических веществ. Этот метод основан на различной растворимости вещества в холодном и горячем растворителе и на различной растворимости компонентов смеси в одном и том же растворителе.

Процесс перекристаллизации включает в себя несколько стадий:

1. Выбор растворителя. Выбор проводится опытным путем. Растворитель должен отвечать следующим требованиям:

1) не взаимодействовать с веществом,

2) не растворять вещество при комнатной температуре и хорошо растворять при нагревании,

3) при охлаждении горячего раствора должны выпадать кристаллы,

4) хорошо растворять примеси при комнатной температуре или не растворять их при кипячении,

5) температура кипения растворителя должна быть ниже температуры плавления вещества на 10-15ºС,

6) растворитель должен легко удаляться с поверхности кристаллов при промывании и сушке.

2. Приготовление насыщенного при температуре кипения растворителя раствора .

3. Фильтрование горячего раствора через складчатый фильтр для избавления от механических примесей.

4. Охлаждение раствора, вызывающее кристаллизацию . Охлаждение ведут с такой скоростью, чтобы выпадали кристаллы средних размеров. Обычно раствор оставляют стоять при комнатной температуре 20-30 минут, а затем помещают в ледяную баню. Если кристаллы не выпадают, то можно поместить в раствор кристаллик данного вещества («затравку») или потереть стеклянной палочкой о внутреннюю стенку стакана с раствором.

5. Отделение кристаллов от маточного раствора (фильтрование при пониженном давлении).

6. Промывание кристаллов холодным растворителем . Если при комнатной температуре вещество практически не растворимо, то кристаллы можно промывать растворителем комнатной температуры.

7. Сушка кристаллов . Сушат кристаллы обычно на воздухе или в вакуумном кристаллизаторе.

Установки для проведения всех стадий перекристаллизации изображены на рисунке № 4

1- Установка для приготовления насыщенного раствора (а – круглодонная колба, б – обратный холодильник, в – плитка)

2- Установка для горячего фильтрования (а – стакан, б – химическая воронка, в – складчатый фильтр)

3- Установка для фильтрования при пониженном давлении (а – фильтр Шотта, б – колба Бунзена)

Очистка методом перегонки или дистилляции

Перегонка или дистилляция - один из важнейших методов очистки жидкостей. При перегонке жидкость путем нагревания переводят в парообразное состояние, затем снова конденсируют, т. е. превращают в жидкость. При этом все твердые примеси и более высококипящие жидкие примеси остаются в колбе, а более низкокипящие примеси отгоняются раньше основной жидкости. Перегонкой очищают воду и другие жидкости. В колбу Вюрца (1) вставляют воронку с длинной трубкой и аккуратно наливают жидкость, подлежащую перегонке, бросают несколько капилляров с одним запаянным концом (запаянный конец должен находиться над жидкостью), это необходимо для равномерного кипения. Закрывают горло колбы пробкой с термометром (2). После этого подставляют приемник для дистиллята (5) и начинают нагревать.

При перегонке необходимо внимательно следить. Чтобы жидкость кипела равномерно и не бурлила. Перегонка не должна проходить слишком быстро. Как только жидкость закипит, внимательно следят за показаниями термометра. Первая небольшая порция дистиллята - это примеси. Когда показания термометра будут соответствовать температуре кипения перегоняемого вещества подставляют другой приемник, куда собирают перегоняемое вещество. Перегонку заканчивают тогда, когда в колбе Вюрца остается небольшое количество жидкости. Перегонять досуха не разрешается.

Большое значение в лаборатории придают перегонке воды, так как все растворы готовят только на дистиллированной воде. Ее расходуют в больших количествах и для других целей. Для получения дистиллированной воды в лабораториях применяют дистилляторы.

Очистка методом возгонки.

Некоторые твердые вещества, например йод, обладают способностью при нагревании не плавясь переходить в твердое состояние. Это явление называется сублимацией или возгонкой. Возгонка применяется для очистки веществ от нелетучих примесей. Этим методом можно очистить йод, хлорид аммония, серу и др. Для очистки небольших количеств вещества путем возгонки пользуются двумя часовыми стеклами одинаковой величины, пришлифованными друг к другу. На нижнее стекло помещают возгоняемое вещество, а между стеклами зажимают продырявленный в нескольких местах кружок фильтровальной бумаги, назначение которого - препятствовать падению образующихся кристаллов на нижнее нагретое стекло. Нижнее стекло подогревают на песчаной бане или очень осторожно, маленьким пламенем, на асбестовой сетке; верхнее стекло охлаждают кусочком влажной фильтровальной бумаги.

Возгонку больших количеств вещества производят в нагреваемом на масляной или воздушной бане стакане. В стакан опускают охлаждаемую изнутри проточной водой колбу, на поверхности которой оседают кристаллы возгоняемого вещества.

Обезвоживание органических реактивов.

При работе в лаборатории часто приходится очищать различные растворители (спирт, эфир, бензол и др.). Все эти реактивы содержат воду в том или ином количестве, присутствие которой может мешать работе. Поэтому эти реактивы, прежде чем перегонять, высушивают. Очищенные таким образом жидкости называются абсолютными. Поскольку органические реактивы обладают разными свойствами, способы их высушивания различны.

Абсолютирование спирта.

Для высушивания спирта в круглодонную колбу помещают обезвоженный сульфат меди CuSO4 и наливают спирт. Колбу подключают к обратному холодильнику, который закрывают пробкой с хлоркальциевой трубкой. В хлоркальциевую трубку помещают прокаленный хлорид кальция для поглощения паров воды из воздуха. Прибор устанавливают на водяной бане и кипятят в течение 6-8 часов. По окончании кипячения обратный холодильник заменяют холодильником Либиха и спирт перегоняют в чистую колбу. Прибор во время перегонки тщательно защищают от попадания влаги воздуха.

Абсолютирование бензола.

В бензол помещают прокаленный хлорид кальция, закупоривают и дают постоять в течение суток. Отфильтровывают и добавляют мелко нарезанный, хорошо очищенный от керосина и оксидной плѐнки металлический натрий. Собирают прибор с обратным холодильником и кипятят в течение 3-4 часов на песочной бане. После этого бензол перегоняют над натрием, тщательно защищая его от попадания влаги воздуха. Категорически запрещается нагревать бензол с металлическим натрием на водяной бане или газовой горелке. Абсолютирование эфира. Эфир, хранившийся долгое время, может содержать примеси пероксида диоксэтила. Поэтому в первую очередь эфир энергично взбалтывают в делительной воронке с концентрированным раствором гидроксида натрия или калия. Отделѐнный от щелочи эфир взбалтывают в делительной воронке с равной порцией воды и отделяют от воды. После промывания эфира водой к нему добавляют прокалѐнный хлорид кальция и дают постоять в течение суток. Затем эфир отфильтровывают, добавляют мелко нарезанный металлический натрий, кипятят с обратным холодильником, как при обезвоживании бензола, и перегоняют, нагревая на песочной бане.

Вопросы для самоподготовки:

1. На какие группы делят химические реактивы по их свойствам? Приведите примеры.

2. Особенности хранения различных групп химических реактивов?

3. Назовите основные правила пользования химическими реактивами.

4. Как следует подбирать пробки для хранения разных химических реактивов?

5. Что означают условные значки на этикетках химических реактивов?

6. Методы очистки химических реактивов.

Самостоятельная работа:

Подготовить конспект на тему «Виды дистилляции. Условия проведения»

Тест «Химические реактивы. Методы очистки.»

1. Марка реактива, в котором содержание примесей не превышает 0,5-1 %

а) ч. б) х.ч. в) ч.д.а. г) техн.

2. Гидроксид натрия, гидроксид калия, оксид кальция относятся к группе веществ

а) гигроскопичные б) светочувствительные в) пожароопасные г) ядовитые

3. Свойства соединений ртути, мышьяка, синильной кислоты, метанола

а) гидроскопичные б) светочувствительные в) пожароопасные г) ядовитые

4. Ядовитые вещества хранят

а) в вытяжном шкафу б) в опечатанном шкафу или сейфе в) в железном ящике вместе с ЛВЖ г) на стеллажах в лабораторном шкафу

5. Метод очистки иодида калия от кристаллов йода

а) перегонка б) возгонка в) дистилляция г) перекристаллизация

6. Метод очистки нитрита натрия от растворимых химических примесей

а) перекристаллизация б) возгонка в) фильтрование г) перегонка

7.Метод очистки для получения дистиллированной воды

а) перегонка б) возгонка в) перекристаллизация г) фильтрование

8.Колба, используемая для перегонки, дистилляции жидкостей

а) коническая б) Вюрца в) круглодонная г) мерная д) плоскодонная

9. Метод очистки твердых реактивов

а) перекристаллизация б) фильтрование в) дистилляция г) центрифугирование д) осаждение

10. Метод очистки жидких реактивов

а) перекристаллизацией б) возгонкой в) перегонкой г) центрифугированием д) осаждением

Ситуационные задачи

1. В ходе генеральной уборки лаборант случайно просыпал реактив иодида калия и йод. Составьте методику очистки иодида калия, содержащего механические примеси и кристаллы йода.

2. Составьте методику очистки натрия хлорида, содержащего механические примеси и примесь натрия сульфата.

3. В лабораторию поступил реактив гидроксида калия (техн.). Для лабораторных исследований необходимо очистить реактив. Составьте методику очистки КОН, который содержит механические примеси.

4. Составьте методику очистки натрия нитрата, содержащего механические и химические примеси.

Эталоны ответов на задачи

1. Сначала из смеси выделяют кристаллы йода методом возгонки. Реактив йодида калия и механические примеси растворяют в воде (готовят насыщенный раствор), отфильтровывают механические примеси и выпаривают кристаллы иодида калия.

2. Смесь хлорида натрия, натрия сульфата и механические примеси растворяют в воде. Для этого готовят горячий насыщенный раствор хлорида натрия с примесями, отфильтровывают и остужают.

3. Для очистки реактива гидроксида калия от механических примесей применяют фильтрование. Для этого смесь растворяют в воде, отфильтровывают и затем кристаллы выпаривают.

4. Смесь, содержащую механические и химические примеси растворяют в воде. Для этого готовят горячий насыщенный раствор, отфильтровывают и затем остужают.

Введение

Бор в основном применяется в виде буры.

БУРА - натриевая соль тетраборной кислоты. Она широко применяется при производстве легкоплавкой глазури для фаянсовых и фарфоровых изделий и, особенно для чугунной посуды (эмаль); кроме того, она идет для приготовления специальных сортов стекла.

На растворении окислов металлов основано применение буры при спаивании металлов. Так как можно спаивать только чистые поверхности металлов, то для удаления окислов место спайки посыпают бурой, кладут на него припой и нагревают. Бура растворяет окислы, и припой хорошо пристает к поверхности металла.

Бор играет важную роль в жизни растений. присутствие в почве небольшого количества соединений бора необходимо для нормального роста с/х культур, как, например хлопка, табака, сахарного тростника и др.

В ядерной технике бор и его сплавы, а также карбид бора применяют для изготовления стержней реакторов. Бор и его соединения используют в качестве материалов, защищающих от нейтронного излучения.

Данная работа посвящена методам очистки буры как основного вещества – источника бора.


Бура и ее свойства

Тетрабора́т на́трия («бура») - Na 2 B 4 O 7 , соль слабой борной кислоты и сильного основания, распространённое соединение бора, имеет несколько кристаллогидратов, широко применяется в технике.

Химия

Структура аниона 2− в буре

Термин «бура» применяют по отношению к нескольким близким веществам: она может существовать в безводной форме, в природе чаще встречается в виде пятиводного или десятиводного кристаллогидрата:

· Безводная бура (Na 2 B 4 O 7)

· Пентагидрат (Na 2 B 4 O 7 ·5H 2 O)

· Декагидрат (Na 2 B 4 O 7 ·10H 2 O)

Однако наиболее часто слово бура относят к соединению Na 2 B 4 O 7 ·10H 2 O.

Природные источники

Бура, «cottonball»

Тетраборат натрия (Бура) встречается в солевых отложениях, образованных при испарении сезонных озёр.

Бура́ (декагидрат тетрабората натрия, Na 2 B 4 O 7 · 10H 2 O) - прозрачные кристаллы, при нагревании до 400°C полностью теряют воду.

Обычная бура (десятиводный гидрат) образует большие бесцветные прозрачные призматические кристаллы; базоцентрированная моноклинная решётка, а = 12, 19 Å, b = 10, 74 Å, с = 11, 89 Å, ß = 106°35´; плотностью 1, 69 - 1, 72 г/см 3 ; в сухом воздухе кристаллы выветриваются с поверхности и мутнеют.

В воде бура гидролизуется, её водный раствор имеет щелочную реакцию.

С оксидами многих металлов бура при нагревании образует окрашенные соединения - бораты («перлы буры»). В природе встречается в виде минерала тинкаля.

Тинкал, или «Бура» (декагидрат тетрабората натрия, Na 2 B 4 O 7 ·10H 2 O) - минерал моноклинной сингонии, призматический. «Тинкал» (Tinkal) - слово санскритского происхождения, являющееся синонимом более часто употребляемого названия минерала - «Бура» (от арабского «бюрак» - белый).

Цвет белый, блеск стеклянный, твёрдость по Моосу 2 - 2,5.

Плотность 1,71.

Спайность средняя по (100) и (110).

Образует короткопризматические кристаллы, по форме напоминающие кристаллы пироксенов, а также сплошные зернистые массы и прожилки в глинистых породах.

Типичный минерал эвапоритов.

На воздухе разрушается, теряя кристаллизационную воду и покрывается коркой тинкалконита или кернита, со временем превращается в них полностью.

Так называемая Ювелирная бура - пятиводный тетраборат натрия Na 2 B 4 O 7 ·5H 2 O.

Бура применяется:

· в производстве эмалей, глазурей, оптических и цветных стекол;

· при пайке и плавке в качестве флюса;

· в бумажной и фармацевтической промышленности;

· в производстве строительных материалов как компонент антисептика для изготовления целлюлозного утеплителя «Эковата»

· как дезинфицирующее и консервирующее средство;

· в аналитической химии:

o как стандартное вещество для определения концентрации растворов кислот;

o для качественного определения оксидов металлов (по цвету перлов);

· в фотографии - в составе медленно действующих проявителей в качестве слабого ускоряющего вещества;

· как компонент моющих средств;

· как компонент косметики;

· как сырьё для получения бора;

· как инсектицид в отравленных приманках для уничтожения тараканов.

В сухом воздухе кристаллы выветриваются с поверхности и мутнеют. При нагревании до 80°С декагидрат теряет 8 молекул воды, при 100 градусах медленно, а при 200°С быстро отщепляется ещё одна молекула воды, в интервале 350 - 400°С происходит полное обезвоживание.

Растворимость буры (в г. безводной соли на 100 г. воды): 1, 6 (10°С), 3, 9 (30°С), 10, 5 (50°С). Насыщенный раствор кипит при 105°С.

В воде бура гидролизуется, поэтому её раствор имеет щелочную реакцию.

Щелочная реакция раствора тетрабората натрия обусловлена тем, что в водном растворе протекает реакция гидролиза c образованием в растворе борной кислоты B(OH) 3:

Na 2 B 4 O 7 = 2Na + + B 4 O 7 2– ;

B 4 O 7 2– + 7H 2 O 2OH – + 4B(OH) 3 ,

а выделение аммиака при взаимодействии с NH4Cl отвечает уравнению:

Na 2 B 4 O 7 + 2NH 4 Cl + H 2 O = 2NH 3 ­ + 2NaCl + 4B(OH) 3

Бура растворяется в спирте и глицерине.

Сильными кислотами полностью разлагается:

Na 2 B 4 O 7 + H 2 SO 4 + 5H 2 O = Na 2 SO 4 + 4H 3 BO 3 .

Именно так голландский алхимик Вильгельм Гомберг, нагревая буру с серной кислотой H 2 SO 4 , выделил борную кислоту B(OH) 3 .

С окислами некоторых металлов бура даёт окрашенные бораты («перлы буры»):

Na 2 B 4 O 7 + CoO = 2NaBO 2 + Co(BO 2) 2 ,

что используется в аналитической химии для открытия этих металлов.

При медленном охлаждении раствора обычной буры при 79°С начинает выкристаллизовываться октаэдрическая бура Na 2 B 4 O 7 . 5H 2 O (или «ювелирная бура»), плотностью 1, 815 г/см 3 , устойчивая в интервале 60 - 150°С. Растворимость этой буры составляет 22 г. в 100 г. воды при 65°С, 31, 4 при 80°С и 52, 3 при 100°С.

Бура является важнейшим флюсом, облегчающим процесс плавки. Расплавленная бура образует при охлаждении на стенках тигля глазурь, предохраняет расплав от доступа кислорода и растворяет окислы металлов.

При медленном термическом обезвоживании обычной буры получается пиробура с плотностью 2, 371 г/см 3 и температурой плавления 741°С. Бура плавится и распадается на метаборат натрия и трёхокись бора, которые смешиваются в жидком состоянии:

Na 2 B 4 O 7 → 2NaBO 2 + B 2 O 3 .

Окись бора, соединяясь с окислами металлов, образует метабораты так же, как борная кислота. Метаборат натрия легко смешивается со вновь образованными метаборатами и быстро уводит их из зоны расплавленного металла, а на их место вступают новые активные молекулы окиси бора.

Бура обладает большей способностью растворять окислы, чем борная кислота, и используется не только как плавильный восстановительный флюс, но и как важнейший флюс при пайке твёрдыми припоями.

Обычную буру получают из борной кислоты, из тинкаля, кернита и некоторых других минералов (путём их перекристаллизации), а также из воды соляных озёр (фракционированной кристаллизацией).

Буру широко применяют при приготовлении эмалей, глазурей, в производстве оптических и цветных стёкол, при сварке, резке и пайке металлов, в металлургии, гальванотехнике, красильном деле, бумажном, фармацевтическом, кожевенном производствах, в качестве дезинфицирующего и консервирующего средства и удобрения.


Очистка веществ методом перекристаллизации

Перекристаллиза́ция - метод очистки вещества, основанный на различии растворимости вещества в растворителе при различных температурах (обычно интервал температур от комнатной до температуры кипения растворителя, если растворитель - вода, или до какой-то более высокой температуры).

Перекристаллизация подразумевает плохую растворимость вещества в растворителе при низких температурах, и хорошую - при высоких. При нагревании колбы вещество растворяется. После стадии адсорбции примесей (если это необходимо) активированным углём, горячего фильтрования (при необходимости) и охлаждения образуется перенасыщенный раствор, из которого растворённое вещество выпадает в виде осадка. После пропуска смеси через колбу Бунзена и воронку Бюхнера либо центрифугирования получаем очищенное растворённое вещество.

· Достоинство метода: высокая степень очистки.

· Недостаток метода: сильные потери вещества в ходе перекристаллизации: всегда часть растворённого вещества в осадок не выпадет, потери при перекристаллизации нередко составляют 40-50 %.

Растворителем могут быть вода, уксусная кислота, этанол (95 %), метанол, ацетон, гексан, пентан - в зависимости от условий.

Если растворителем является вода, то нагревание проводят в водяной бане. Охлаждение перенасыщенного раствора проводят с помощью водяного холодильника, если температура кипения растворителя ниже 130 градусов, если выше - с помощью воздушного холодильника.

Растворимость большинства твердых веществ с ростом температуры увеличивается. Если приготовить горячий концентрированный (почти насыщенный) раствор такого вещества, то при охлаждении этого раствора начнется выпадение кристаллов, поскольку растворимость вещества при более низкой температуре меньше. Образование холодного насыщенного раствора, концентрация которого меньше, чем исходного (горячего), будет сопровождаться кристаллизацией «излишка» вещества.

Растворение вещества, содержащего растворимые примеси, в горячей воде, а затем осаждение его из раствора при достаточном охлаждении - это способ очистки вещества от растворимых примесей, который называют перекристаллизацией. Примеси при этом, как правило, остаются в растворе, так как присутствуют там в ничтожно малых («следовых») количествах и при охлаждении не могут образовать своего насыщенного раствора.

Некоторая часть очищаемого вещества также остается в холодном насыщенном растворе, который в лабораторной практике называют маточным , и такие неизбежные (плановые) потери вещества можно рассчитать по значению растворимости вещества при этой температуре.

Чем больше уменьшается растворимость вещества при охлаждении раствора, тем выше будет выход перекристаллизованного вещества.

Многие твердые вещества при кристаллизации из водного раствора образуют кристаллогидраты; например, из водного раствора сульфат меди (II) кристаллизуется в виде CuSO 4 ·5 H 2 O. В этом случае при расчете необходимо учитывать воду, которая входит в состав кристаллогидрата.

Перекристаллизация имеет большое значение в химии и химической технологии, поскольку подавляющее большинство твердых веществ - химических продуктов, реактивов, химикатов, лекарств и т.д. получают из водных и неводных растворов, а заключительная стадия этого получения - кристаллизация (или перекристаллизация с целью повышения чистоты продукта). Поэтому очень важно проводить указанные процессы эффективно, с наименьшими потерями и высокими показателями качества.

Для проведения перекристаллизации используют специальную химическую посуду и лабораторное оборудование.

Процесс перекристаллизации осуществляют в несколько стадий:

Выбор растворителя;

Приготовление насыщенного горячего раствора;

- «Горячая» фильтрации;

Охлаждение раствора;

Отделение образовавшихся кристаллов;

Промывание кристаллов чистым растворителем;

Высушивание.

Выбор растворителя

Правильный выбор растворителя - условие при проведении перекристаллизации.

К растворителя выдвигают ряд требований:

Значительная разница между растворимостью вещества в определенном растворителе при комнатной температуре и при нагревании;

Растворитель должен растворять при нагревании только вещество и не растворять примеси. Эффективность перекристаллизации возрастает при увеличении разности в растворимости вещества и примесей;

Растворитель должен быть индифферентным как к веществу, так и к примесям;

Температура кипения растворителя должна быть ниже температуры плавления вещества на 10 - 15°С, иначе при охлаждении раствора вещество выделится не во кристаллической форме, а в виде масла.

Экспериментально растворитель выбирают так: небольшую пробу вещества помещают в пробирку, добавляя в нее несколько капель растворителя. Если вещество растворяется без нагревания, такой растворитель не пригоден для перекристаллизации.

Выбор растворителя считается правильным, если вещество плохо растворяется в нем без нагрева, хорошо - при кипении, а при охлаждении горячего раствора происходит ее кристаллизация.

Как растворитель при перекристаллизации используют воду, спирты, бензол, толуол, ацетон, хлороформ и другие органические растворители или их смеси.

Вещество для перекристаллизации помещают в колбу (1), добавляют небольшую порцию растворителя и нагревают с обратным холодильником (2) до кипения раствора. Если исходного количества растворителя не хватает для полного растворения вещества, растворитель небольшими порциями добавляют с помощью воронки через обратный холодильник.

Эффективная очистка сильно загрязненных веществ возможно с помощью различных адсорбентов (активированный уголь (activeated carbon), силикагель и т.д.). В этом случае готовят горячий насыщенный раствор вещества, охлаждают его до 40 - 50°С, добавляют адсорбент (0,5 – 2 % от массы вещества) и снова кипятят с обратным холодильником в течение нескольких минут.

«Горячая» фильтрация

Для отделения от механических примесей и адсорбента горячий раствор фильтруют. Чтобы предотвратить выделение вещества на фильтре применяют различные методы.

Простая установка «горячего» фильтрования (рис. 3.2) состоит из специальной воронки для «горячего» фильтрования (1), обогреваемой паром, химической воронки (2) со складчатым фильтром (3), который помещается в нее.

Горячий насыщенный раствор вещества быстро выливают на бумажный фильтр, помещенный в стеклянную воронку, которая нагревается с помощью воронки для горячего фильтрования. Фильтрат собирают в стакан или коническую колбу. При образовании на фильтре кристаллов вещества их промывают небольшим количеством горячего растворителя.

Охлаждение раствора

При охлаждении фильтрата до комнатной температуры начинается процесс кристаллизации. Для ее ускорения фильтрат охлаждают под струей холодной воды. При этом растворимость вещества уменьшается, происходит окончательная кристаллизация.

Отделение образовавшихся кристаллов

Отделение кристаллов от растворителя осуществляют с помощью фильтрования, при этом отсос или создания вакуума в приемнике часто используют для ускорения процесса фильтрования. Для этого используют вакуумный насос (водоструйный, масляный или Камовского).

Фильтрация осуществляется на установке, которая состоит из воронки Бюхнера (1) с бумажным фильтром, колбы Бунзена или специальной пробирки (2), промежуточной стакана (3) и вакуумного насоса. Размер бумажного фильтра должен точно совпадать с площадью дна воронки Бюхнера.

Бумажный фильтр смачивают растворителем, вкладывают в воронку и включают вакуумный насос. При работе насоса под фильтром создается пониженное давление - возникает характерный звук, что свидетельствует о наличии вакуума в системе и возможность фильтрации. Охлажденный кристаллический продукт вместе с растворителем при взбалтывании небольшими порциями переносят с конической колбы на бумажный фильтр.

В процессе фильтрования растворитель проходит через фильтр, осадок остается на нем. Следует следить, чтобы фильтрат НЕ заполнил колбу до уровня тубуса, соединенного с промежуточной стаканом. Фильтрация продолжают до тех пор, пока не перестанет капать фильтрат. После этого осадок отжимают на фильтре широкой стеклянной пробкой или специальной стеклянной палочкой, выключают насос, промывают осадок чистым растворителем, включают насос и снова отжимают. Установку отсоединяют от вакуума, вынимают воронку. Фильтр вместе с веществом аккуратно переносят в чашку Петри или специальную емкость для высушивания.

Высушивание твердого вещества

Сушить твердое вещество можно на воздухе при комнатной температуре. Гигроскопичны вещества высушивают в эксикаторах; устойчивы к воздействию воздуха и температуры - в сушильном шкафу, где температура должна быть на 20 - 50°С ниже температуры плавления данного вещества. Для перекристаллизованного и высушенного продукта определяют массу, выход и температуру плавления.

Определение температуры плавления

Температурой плавления вещества считают температурный интервал от начала до полного расплавления этого вещества. Чем чище вещество, тем меньше этот интервал. Разница между температурой, при которой начинается образование жидкой фазы и температурой полного расплавления для чистых соединений, не превышает 0,5°С.

Наличие незначительного количества примесей в веществе снижает ее температуру плавления и соответственно увеличивает интервал плавления. Это свойство используют для установления идентичности двух веществ, если одна из них известна: тщательно смешивают одинаковые количества веществ и определяют температуру плавления смеси (смешанная проба). Если температура плавления смешанной пробы такая же, как и у чистого вещества, делают вывод об идентичности обоих веществ.

Температуру плавления кристаллической органического вещества определяют в капилляре. Капилляр извлекают из стеклянной трубки, нагревая ее на пламени горелки. Один конец капилляра запаивают.

Перекристаллизованное вещество тщательно растирают на часовом стекле или в ступке. Открытым концом капилляра набирают небольшое количество вещества и бросают его запаянным концом вниз в стеклянную трубку длиной ≈ 60 - 80 см, поставленную вертикально на лабораторный стол. Операцию наполнения капилляра повторяют несколько раз, пока в нем не образуется цельный столбик вещества высотой 2 - 3 мм.

Наполненный капилляр (1) закрепляют резиновыми кольцами (2) на термометре (3) так, чтобы проба вещества находилась на уровне шарики термометра. Нагрев прибора регулируют так, чтобы температура увеличивалась со скоростью 1°С в минуту. При этом внимательно следят за состоянием колонки вещества капилляре, отмечая все изменения - изменение окраски, разложение, спекание, намокания и т.п.. Началом плавления считают возникновение первой капли в капилляре (Т 1), а окончанием - окончание расплавления последних кристалликов вещества (Т 2). Интервал температур (Т 2 - Т 1) называют температурой плавления данного вещества (Т пл).


Практическая часть

Методики очистки

1 способ. 25 г буры при 60 0 С растворяют в 50 мл воды. Раствор быстро фильтруют через складчатый фильтр в фарфоровую чашку или стакан, охлаждаемый снегом. Фильтрат непрерывно помешивают стеклянной палочкой.

Тетраборат натрия выпадает в виде мелких кристаллов, их отсасывают, промывают небольшим количеством холодной воды и повторяют перекристаллизацию. Кристаллы высушивают на воздухе в течение 2 – 3 дней. Полученный препарат имеет формулу Na 2 B 4 O 7 *10H 2 O и пригоден для установки титра.

2 способ. 25 г буры при 65 - 70 0 С растворяют в 75 мл воды. Полученный раствор быстро фильтруют через складчатый фильтр, вставленный в воронку с обрезанным концом, или через воронку для горячего фильтрования. Фильтрат сначала охлаждают медленно до 25 - 30 0 С, а затем быстро в ледяной воде или в снегу, усиливая кристаллизацию перемешиванием палочкой. Выпавшие кристаллы отсасывают, промывают небольшим количеством ледяной воды и высушивают между листами фильтровальной бумаги в течение 2 – 3 дней. Высушенные кристаллы буры должны легко отставать от сухой палочки.

Рассчитывают процент практического выхода буры.

Перекристаллизованную буру хранят в банке с хорошо притертой пробкой.

Разделение и очистка веществ являются операциями, обычно связанными между собой. Разделение смеси на составляющие чаще всего преследует цель получения чистых, по возможности без примесей, веществ. Однако само понятие о том, какое вещество следует считать чистым, еще окончательно не установлено, так как требования к чистоте вещества меняются. В настоящее время методы получения химически чистых веществ приобрели особое значение.

Разделение и очистка веществ от примесей основываются на использовании их определенных физических, физико-химических или химических свойств.

Техника важнейших методов разделения и очистки веществ (перегонка и сублимация, экстракция, кристаллизация и перекристаллизация, высаливание) описана в соответствующих главах. Это - наиболее распространенные приемы, чаще всего используемые не только в лабораторной практике, но и в технике.

В отдельных наиболее сложных случаях используют специальные методы очистки.

Диализ может быть использован для разделения и очистки веществ, растворенных в воде или в органическом растворителе. Этим приемом чаще всего пользуются для очистки высокомолекулярных веществ, растворенных в воде, от примесей низкомолекулярных или от неорганических солей.

Для очистки методом диализа необходимы так называемые полупроницаемые перегородки, или мембраны» Особенность их заключается в том, что они имеют поры, позволяющие проходить через них веществам, размер молекул или ионов которых меньше размеров пор, и задерживать вещества, размеры молекул или ионов которых больше размеров пор мембраны. Таким образом, диализ можно рассматривать как особый случай фильтрования.

Рис. 477. Диализатор с мешалкой.

В качестве полупроницаемых перегородок или мембран могут быть использованы пленки из очень многих высокомолекулярных и высокополимерных веществ. В качестве мембран применяют пленки из желатина, из альбумина, пергамент, пленки из гидратцел-люлозы (типа целлофана), из эфпров целлюлозы (ацетат, пи грат н пр.), из многих продуктов полимеризации п конденсации. Из неорганических веществ находят применение: иеглазуроваииый фарфор, плитки из некоторых сортов обожженной глины (типа коллоидных глин, как бентонит), прессованное мелкопористое стекло, керамика и др.

Основными требованиями к мембранам являются: 1) нерастворимость в том растворителе, на котором приготовлен диализируемый раствор; 2) химическая инертность по отношению как к растворителю, так и к растворенным веществам; 3) достаточная механическая прочность.

Многие мембраны способны набухать в воде или другом растворителе, теряя при этом механическую прочность. Набухшая пленка может быть легко повреждена или разрушена. В подобных случаях пленку для диализа изготовляют на какой-нибудь прочной основе, например на ткани, инертной к растворителю (хлопчатобумажная, шелковая, из стекловолокна, из синтетического волокна и др.), или па фильтровальной бумаге. Иногда для придания мембранам механической прочности их укрепляют металлическими сетками (армирование) из соответствующего металла (бронза, платина, серебро и пр.).

Для получения различной пористости у мембран из эфиров целлюлозы или из некоторых других высокополимерных веществ в соответствующие лаки вводят различное количество воды. При высыхании лаковой пленки получается мембрана молочного цвета, имеющая заданную пористость (об этом см. гл. 9 «Фильтрование»).

Для диализа применяют приборы называемые диализаторами (рис. 477). Они могут иметь различную конструкцию. Техника работы с диализаторами очень проста. Полупроницаемая мембрана разделяет прибор обычно на две части *. В одну половину прибора наливают раствор, подлежащий диализу, а в другую половину - чистый растворитель, причем последний обычно обновляют (постоянный ток жидкости). Если чистый растворитель не менять, то концентрации проходящих через мембрану веществ с обеих сторон ее в конце концов уравновесятся и диализ практически остановится. Если же растворитель все время обновлять, то из диализируемого раствора можно практически удалить все растворимые вещества, способные проникать через мембрану.

Скорость диализа неодинакова для различных веществ и зависит от ряда условий и свойств вещества, которое очищают. Повышение температуры раствора и обновление растворителя способствуют ускорению диализа.

Во многих случаях вместо обычного диализа применяют электродиализ**. Применение электрического тока при диализе ускоряет процесс и создает ряд других преимуществ.

Осаждение малорастворимых веществ. Этим приемом широко пользуются для аналитических целей, получая осадки, содержащие только какое-нибудь одно, неорганическое или органическое, вещество. Полученный осадок может быть дополнительно очищен или промыванием («Фильтрование», или повторным переосаждением после растворения осадка, или экстрагированием соответствующими растворителями в определенных для каждого случая условиях.

Аппаратура, применяемая для проведения этого метода, зависит от свойств веществ и свойств растворителей. Часто операцию можно проводить просто в стакане или в колбе. В других же случаях собирают герметизированную аппаратуру, подобную той, которая описана в гл. 10 «Растворение». Осадки отфильтровывают, промывают и затем подвергают дальнейшей обработке (перекристаллизации, сушке и т. д.).

* Имеются диализаторы, состоящие из трех частей и двух мембраи, разделяющих их.

** РЖХим., 1957, Ni 10, 247, реф. 34670.

Отделение малора«гворимого осадка от маточного раствора можно достичь отстаиванием с последующим промыванием осадка с применением декантации или центрифугирования. Чем продолжительнее отстаивание, тем больше уплотняется слой осадка. Однако не рекомендуется давать осадкам отстаиваться слишком долго, так как со временем между осадком и маточным раствором могут возникать побочные процессы (адсорбция других ионов, комп-лексообразование с растворителем), затрудняющие последующую "обработку отделяемого осадка.

Комплексообразование является одним из приемов выделения чистых веществ , особенно неорганических. Комплексные соединения могут быть или труднорастворимыми в воде, но легкорастворимыми в органических растворителях, или наоборот. В первом случае осадки обрабатывают, как описано выше. Если же комплексное соединение легко растворяется в воде, его можно извлечь в чистом виде из водного раствора путем экстрагирования подходящим органическим растворителем или же разрушить комплекс тем или иным путем.

Приемом комплексообразования можно выделить металлы в очень чистом виде. Это особенно касается редких и рассеянных металлов, которые могут быть выделены в виде комплексов с органическими веществами.

Образование летучих соединений. Этим приемом можно пользоваться в том случае, если образуется летучее соединение только выделяемого вещества, например какого-либо металла. В том случае, если одновременно образуются летучие соединения примесей, этот прием применять не рекомендуется, так как освобождение от летучих примесей может оказаться затруднительным. Во многих случаях образование летучих галогенидов (хлористые или фтористые соединения) некоторых веществ может оказаться очень эффективным как метод очистки, особенно в сочетании с вакуум-перегонкой. Чем ниже температура возгонки или кипения интересующего нас вещества, тем легче его отделить от других и очистить фракционной перегонкой или диффузией.

Скорость диффузии газообразных веществ через полупроницаемые перегородки зависит от плотности и молекулярной массы очищаемого вещества и почти обратно пропорциональна им,

Зонная плавка. Зонную плавку можно рассматривать как частный случай экстракции расплавленным веществом, когда твердая фаза вещества находится в равновесии с его жидкой фазой. Если растворимость в жидкой фазе какой-либо примеси, содержащейся в очищаемом веществе, отличается от растворимости в твердой фазе, то очистка от этой примеси теоретически возможна *. Этот метод особенно ценен для очистки таких соединений (преимущественно органических), которые имеют низкое давление паров или разлагаются при перегонке. Для соединений, имеющих низкую теплопроводность, зону плавления можно создать, применяя высокочастотный нагрев с диэлектрическим сопротивлением. Метод зонной плавки дает возможность полностью использовать исходные вещества и позволяет получать большие монокристаллы органических веществ и некоторых металлов (например, алюминия, германия и др.).

В простейшей форме метод зонной плавки в применении к металлам состоит в медленном перемещении расплавленной зоны вдоль стержня из металла.

Метод зонной плавки может найти широкое применение для приготовления чистых органических соединений.

Очистка бензойной кислоты . Цилиндрический сосуд наполняют расплавленной бензойной кислотой. Этот цилиндр с затвердевшей кислотой медленно пропускают через обогреваемое кольцо таким образом, чтобы расплавленная зона передвигалась вверх по цилиндру. Двукратная обработка бензойной кислоты таким приемом заменяет 11 перекристаллизации из бензола.

Очистка нафталина от антрацена **. Загрязненный нафталин помещают в трубку (из стекла пирекс) длиной около 900 мм и диаметром 25 мм. Эту трубку пропускают через небольшой цилиндрический нагреватель (может быть использована трубчатая печь для микроанализа, снабженная реостатом). Печь передвигают вниз с такой скоростью, чтобы расплавленная зона длиной около 50 мм могла бы переместиться по всей длине трубки за 24 ч. После этого нагреватель возвращают в исходное положение и цикл обработки повторяют. После 8 циклов содержание антрацена в верхней половине взятого для обработки нафталина составляло 1-10-4%

* P f а п n W. S. J„ MeUIs1 4, 747 (1952). ** Ind. Chemist, 31, Кз 370, 535 (1955).

Метод зонной плавки используют для получения чистого германия, а также для очистки соединений, когда один или оба компонента смеси летучи или разлагаются при нагревании **.

В настоящее время делаются попытки применить метод зонной плавки для очистки жидкостей. Этот метод оказался применим для"очистки только предварительно замороженной жидкости. Для этого жидкость помещают в узкую и длинную стеклянную лодочку (шириной 12 мм, длиной 110 мм) и замораживают при -30° С, с помощью циркуляционного охлаждающего устройства, работающего на смеси твердой углекислоты с ацетоном. Замороженную жидкость в лодочке медленно протягивают с помощью моторчика Уоррена со скоростью 1 см/ч через несколько последовательных зонных нагревателей, расположенных на расстоянии около 1,8 см друг от друга и представляющих собой витки нихро.мовой проволоки диаметром 0,5 мм (0,5 ом/м) в пазах небольших керамических блоков. Силу тока подбирают такой, чтобы температура расплавленных узких зон в замороженной жидкости была 3--4° С. Расплавленные зоны, перемещаясь одна за другой, увлекают за собой примеси, имевшиеся в жидкости. Примеси концентрируются в конечной части бруска замороженной жидкости. Таким приемом можно очищать водные и неводные растворы и выделять растворенные или только тонко диспергированные вещества.

Аппаратурное оформление метода зонной плавки зависит от свойств взятых веществ, и рекомендовать какую-либо стандартную аппаратуру в этом случае трудно.

Хроматография и ионный обмен. Эти методы основаны на использовании явления сорбции для извлечения веществ, содержащихся в растворах.

Метод хроматографии особенно важен для концентрирования веществ, содержание которых в исходном растворе очень мало, а также для получения чистых препаратов. При помощи этого метода были получены редкоземельные и заураповые элементы высокой чистоты. Многие фармацевтические и органические препараты очищают и получают в чистом виде при помощи этого метода. Почти во всех случаях, когда поставлена задача очистки или отделения какого-либо вещества из смеси, находящейся в растворе, хроматография и ионный обмен могут оказаться надежными методами.

Для ионного обмена применяют так называемые иониты, представляющие собой неорганические или органические адсорбенты (преимущественно смолы разных марок). По своим химическим свойствам они разделяются на следующие группы: катнониты, ани-ониты и амфолиты. Катиониты обменивают катионы. Аниониты обладают способностью обменивать анионы. Амфожгты способны обменивать как катионы, так и анионы-в зависимости от рН среды и свойств вещества, которое должно быть поглощено ионитом.

Для хроматографии в ряде случаев применяют очень простую аппаратуру (рис.478).

Иониты способны к ионному обмену до полного насыщения их поглощаемым ионом. Отработанные иониты регенерируют путем промывания катионитов кислотой, анионитов-щелочами.* В элюате (жидкость, получаемая при промывании ионита) будут находиться адсорбируемые ионитом ионы.

Для разделения и фракционирования полимеров предложен способ фильтрации их растворов через гель, названный «сефадекс» (Швеция). Этот способ называют г е л ь - ф и л ь т р а ц и е й. По существу он является хроматографическим разделением высокомолекулярных веществ на колонке.

Сефадекс выпускается в виде мелких зерен, набухающих в воде. Ниже приведены типы сефадскса и для примера - молекулярные веса разделяемых полисахаридов:



При использовании других веществ границы молекулярных весов могут отклоняться от приведенных значений в ту или иную сторону. Так, для белковых веществ диапазоны молекулярных весов шире, чем в случае полисахаридов. Для использования сефадекса сконструирована хро-матографическая колонка с рубашкой; колонка выполнена из боросиликатного стекла.

Вначале сефадекс смешивают с водой, взмучивают полученную смесь, вливают в колонку и дают осесть. Затем в колонку добавляют концентрированный раствор исследуемого вещества так, чтобы не взмучивался верхний слой сефадекса. Равновесие устанавливается очень быстро, поэтому скорость вымывания по сравнению с обычными иопитами может быть большой. Фракции контролируют или спектрофотометрически (органические полимеры), или по электропроводности (растворы неорганических веществ). Метод гель-фильтрования полностью заменяет диализ и электродиализ. При его помощи можно очень тонко фракционировать полимеры, которые мало отличаются между собой по молекулярным массам.

О зонной плавке льда см. Shildknecht H., M а п п 1 A., Angew. Chem., 69, Ня 20, 634 (1957); РЖХим, 1958, Ms 11, 107, реф. 35844; П ф а и н В. Дж., Зонная плавка, Металлургиздат, 1960.

Об автоматической аппаратуре для зонной плавки малых ко-: личеств веществ см. W i I m a n W. G., Chem. a. lnd., № 45, 1825 (1961); РЖХим, 1962, реф. 9Е34.

Приборы для зонной плавки органических соединении см. Ma ire J., Moritz J. С, Kief с г R., Symposium fiber Zoncn-schmelzen und Kolonnen - kristallisiereii, Karlsruhe, S. 1, s, a, 121 (1963); РЖХим, 1965, 14Д76.

Получение органических веществ высокой чистоты путем непрерывной кристаллизации в колонках и зонной плавки описали Schildknecht H., Ma as К., Kr a us W., Chem. lug. Techn.. 34, № 10, 697 (1962); РЖХим, 1964, 6Д70.

Зоиная плавка органических веществ, Херингтон E., пер. с англ., Изд. «Мир», I9G5; РЖХим, 1965, 13Б363К.

О зонной плавке органических соединений см. Wilcox W. R., Friedenberg R„ Back N., Chem. Revs, 64, Ki 2, 186 (1964); РЖХим, 1964, 19Б359.

Установка для зонной плавки см. Абакумов Б. И., Коновалов Э. Е„ Зав. лаб., 29, Ki 12, 1506 (1963); РЖХим, 1964, 24Д93.

Установку для бестигельной зонной плавки веществ с малым поверхностным натяжением описали Шплкин А. И., Ки-лиев А. А., Зав. лаб., 29, Ki 12, 1504 (1953); РЖХим, 1964, 24Д94.

О новых методах разделения в химии см. Muss о H., Natur-wiss., 45, № 5, 97 (1958); РЖХим, 1958, № 21, 148, реф. 70711.

О хроматографических методах очистки и выделения веществ см. Хроматографический метод разделения ионов. Сборник статей, Издатинлит, 1949; Ионный обмен. Сборник статей, Издатинлит, 1951; Лннстед Р., Эльвидж Дж., В о л л и M., В и л к и н с о н Дж., Современные методы исследования в органической химии, Издатинлит, 1959.

О молекулярных ситах см. Minkoff G. I., Duffett R. Н. E., BPMag., Ks 13, 16 (1964); РЖХим, 1965, 17А28.

Изготовление, свойства и применение синтетических цеолитов (молекулярных сит) см. Espe W., Hvbl С, 9 Internal Kolloq. Techn. Hochschule Ilmenau; РЖХим, 1966, 20Б814.

Об использовании синтетического цеолита типа А для очистки рубидия от калия, цезия и натрия непрерывным протнвоточным ионообменным методом см. Горшков В. И., Федоров В. А., Толмачев A. M., ЖФХ, 40, Ki 7, 1436 (1966); РЖХим, 1966, 24 Б1268.

О методе разделения растворенных веществ, основанном на различии в скоростях диффузии см. N i е s е 1 W., Roskenblock H., Naturwis., 50, Ki 8, 328 (1963); РЖХим, 1964, 5Б612.

Кристаллизация в колонке - лабораторный метод для тонкого

Разделения кристаллизующихся веществ см. Schild-Knecht H., lossler S., Ma a s K-, Glas- u. Instr.-Techn., 7, № 6, 281, 285, 289 (1963); РЖХим, 1964, 7Д66.

Применение хроматографии, основанной на проникновении вещества в гель, к веществам с низким и высоким молекулярным весом см. M а 1 е у L. E., Am. Chem. Soc. Polymer Preprints, 5, Ki 2, 720 (1964); РЖХим, 1965, 10Б1346.

Сефадекс и гель-фильтрация см. Ing. chim., 1963, № 3, 7 (1963); РЖХим, 1965, 10Б1344