Давление насыщенного пара этанола таблица. Давление насыщенного пара над растворами неограниченно смешивающихся жидкостей

Давление насыщенного пара жидкости с повышением температуры увеличивается (рис. 8.2), и как только оно станет равным атмосферному, жидкость закипает. Из рис. 8.2 видно, что давление насыщенного пара закономерно повышается с увеличением температуры. При одинаковом внешнем давлении жидкости закипают при различной температуре, так как имеют неодинаковое давление насыщенного пара.

ацетон этанол вода

Температура, оС


Рис. 8.2 Зависимость давления насыщенного пара (Р×10-5 Па.) жидкости от температуры (ацетон, этиловый спирт, вода – соответственно).

Если изменить внешнее давление, то температура кипения жидкости будет изменяться. С повышением внешнего давления температура кипения увеличивается, а с понижением (вакуум) – уменьшается. При определенной величине внешнего давления жидкость может кипеть при комнатной температуре.

Зависимость давления насыщенного пара от температуры выражается уравнением Клаузиуса – Клапейрона

, (8.1)

где - мольная энтальпия испарения, ; - мольное изменение объема в процессе испарения, равное .

При испарении жидкости резко изменяется объем паровой фазы по сравнению с жидкой. Так, при испарении 1 воды при 25 оС и давлении 760 мм рт. ст. образуется 1244 пара, т.е. объем увеличился в 1244 раза. Поэтому в уравнении объемом жидкости можно пренебречь: , .

. (8.2)

С учетом уравнения Менделеева–Клапейрона и тогда

. (8.3)

Интегрирование уравнения (8.3) приводит к формуле

. (8.4)

Эта формула носит имя двух ученых – Клаузиуса и Клапейрона, которые вывели ее из различных исходных положений.

Формула Клаузиуса–Клапейрона применима ко всем фазовым переходам, включая плавление, испарение и растворение вещества.

Теплота испарения жидкости - это количество теплоты, поглощаемое жидкостью при изотермическом испарении. Различают мольную теплоту испарения и удельную теплоту испарения (относящуюся к 1 г жидкости). Чем выше теплота испарения, тем жидкость при прочих равных условиях испаряется медленнее, так как молекулам приходится преодолевать большие силы межмолекулярного взаимодействия.

Сопоставление теплот испарения может быть более простым, если их рассматривать при постоянной температуре.

Для определения широко используется правило Трутона: мольная теплота испарения при атмосферном давлении (Р = const) различных жидкостей прямо пропорциональна их температуре кипения Ткип

или

Коэффициент пропорциональности называется коэффициентом Трутона и для большинства нормальных (неассоциированных) жидкостей равен 88,2 - 92,4 .

Теплота испарения данной жидкости зависит от температуры. С повышением температуры она понижается и при критической температуре становится равной нулю.

В инженерных расчетах используется эмпирическое уравнение Антуана

, (8.5)

где А, В, - константы, характеризующие вещество.

Найденные зависимости давления насыщенного пара от температуры используются в пожарно–технических расчетах для вычисления концентра- ции пара (; %), температурных пределов распространения пламени

.

В условиях пожара жидкости испаряются в окружающее пространство. Скорость испарения жидкости при этом определяет скорость ее выгорания. В этом случае на скорость испарения решающее влияние оказывает количество тепла, поступающее из зоны горения.

Скорость выгорания жидкостей непостоянна. Она зависит от начальной температуры жидкости, диаметра резервуара, уровня жидкости в нем, скорости ветра и т.д.

Давление насыщенного пара над растворами неограниченно смешивающихся жидкостей

В практике широко используются многочисленные растворы, состоящие из двух и более хорошо растворимых друг в друге жидкостей. Наиболее простыми являются смеси (растворы), состоящие из двух жидкостей – бинарные смеси. Закономерности, найденные для таких смесей, можно использовать и для более сложных. К таким бинарным смесям можно отнести: бензол-толуол, спирт-эфир, ацетон-вода, спирт-вода и т.д. В этом случае в паровой фазе содержатся оба компонента. Давление насыщенного пара смеси будет слагаться из парциальных давлений компонентов. Так как переход растворителя из смеси в парообразное состояние, выражаемое его парциальным давлением, тем значительнее, чем больше содержание его молекул в растворе, Рауль нашел, что «парциальное давление насыщенного пара растворителя над раствором равно произведению давления насыщенного пара над чистым растворителем при той же температуре на его мольную долю в растворе»:

, (8.6)

где - давление насыщенного пара растворителя над смесью; - давление насыщенного пара над чистым растворителем; N – мольная доля растворителя в смеси.

Уравнение (8.6) является математическим выражением закона Рауля. Для описания поведения летучего растворенного вещества (второго компонента бинарной системы) применяется это же выражение.

Простейший представитель кетонов. Бесцветная легкоподвижная летучая жидкость с резким характерным запахом. Он полностью смешивается с водой и большинством органических растворителей. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, жиры, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия). Является одним из метаболитов, производимых человеческим организмом.

Применение ацетона :

При синтезе поликарбонатов, полиуретанов и эпоксидных смол;

В производстве лаков;

В производстве взрывчатых веществ;

В производстве лекарственных препаратов;

В составе клея для киноплёнок как растворитель ацетата целлюлозы;

Компонент для очистки поверхностей в различных производственных процессах;

Широко используется для хранения ацетилена, который не может храниться под давлением в чистом виде из-за опасности взрыва (для этого используют ёмкости с пористым материалом, пропитанные ацетоном. 1 литр ацетона растворяет до 250 литров ацетилена).

Опасность для человека:

Опасность при разовом воздействии высоких концентраций ацетона.Пар раздражает глаза и дыхательные пути. Вещество может оказывать действие на центральную нервную систему, печень, почки, желудочно-кишечный тракт. Вещество может всасываться в организм при вдыхании и через кожу. Длительный контакт с кожей может вызвать дерматит. Вещество может оказывать действие на кровь и костный мозг. Из за высокой токсичности в Европе вместо ацетона, чаще применяют метилэтилкетон.

Пожарная опасность:

Сильно огнеопасно. Ацетон относят к класу 3,1 ЛВЖ с температурой вспышки менее +23 град.С. Не допускать открытого огня, искр и курения. Смесь паров ацетона с воздухом взрывоопасна. Опасное загрязнение воздуха будет достигаться довольно быстро при испарении этого вещества при 20°C. При распылении - еще быстрее. Пар тяжелее воздуха и может стелиться по земле. Вещество может образовать взрывоопасные перекиси при контакте с сильными окислителями, такими как уксусная кислота, азотная кислота, перекись водорода. Реагирует с хлороформом и бромоформом при обычных условиях с опасностью пожара и взрыва. Ацетон агрессивен в отношении некоторых видов пластика.

В таблице представлены теплофизические свойства пара бензола C 6 H 6 при атмосферном давлении.

Даны значения следующих свойств: плотность, теплоемкость, коэффициент теплопроводности, динамическая и кинематическая вязкость, температуропроводность, число Прандтля в зависимости от температуры. Свойства даны в диапазоне температуры от .

По данным таблицы видно, что значения плотности и числа Прандтля при повышении температуры газообразного бензола уменьшаются. Удельная теплоемкость, теплопроводность, вязкость и температуропроводность при нагревании пара бензола увеличивают свои значения.

Следует отметить, что плотность пара бензола при температуре 300 К (27°С) составляет 3,04 кг/м 3 , что намного ниже этого показателя у жидкого бензола (см. ).

Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 Не забудьте разделить на 1000.

Теплопроводность пара бензола

В таблице даны значения теплопроводности пара бензола при атмосферном давлении в зависимости от температуры в интервале от 325 до 450 К.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 4 . Не забудьте разделить на 10000.

В таблице приведены значения давления насыщенного пара бензола в диапазоне температуры от 280 до 560 К. Очевидно, что при нагревании бензола давление его насыщенных паров увеличивается.

Источники:
1.
2.
3. Волков А. И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.

Что собой представляет ацетон? Формула этого кетона рассматривается в школьном курсе химии. Но далеко не все имеют представление о том, как опасен запах данного соединения и какими свойствами обладает это органическое вещество.

Особенности ацетона

Ацетон технический является самым распространенным растворителем, применяемым в современном строительстве. Так как данное соединение имеет невысокий уровень токсичности, его также применяют в фармацевтической и пищевой промышленности.

Ацетон технический используется в качестве химического сырья при производстве многочисленных органических соединений.

Медики считают его наркотическим веществом. При вдыхании концентрированных паров ацетона возможно серьезное отравление и поражение центральной нервной системы. Данное соединение представляет серьезную угрозу для подрастающего поколения. Токсикоманы, которые используют пары ацетона для того, чтобы вызвать состоянием эйфории, сильно рискуют. Медики опасаются не только за физическое здоровье детей, но и за их психическое состояние.

Смертельной считается доза от 60 мл. При попадании в организм значительного количества кетона наступает потеря сознания, а через 8-12 часов - смерть.

Физические свойства

Данное соединение при нормальных условиях находится в жидком состоянии, не имеет цвета, обладает специфическим запахом. Ацетон, формула которого имеет вид СН3СНОСН3, обладает гигроскопическими свойствами. Данное соединение в неограниченных количествах смешивается с водой, этиловым спиртом, метанолом, хлороформом. У него невысокая температура плавления.

Особенности использования

В настоящее время область применения ацетона достаточно широка. Его по праву считают одним из самых востребованных продуктов, применяемых при создании и производстве лакокрасочных материалов, в отделочных работах, химической промышленности, строительстве. Все в большем количестве ацетон применяют для обезжиривания меха и шерсти, удаления из смазочных масел воска. Именно этим органическим веществом пользуются маляры и штукатуры в своей профессиональной деятельности.

Как сохранить ацетон, формула которого СН3СОСН3? Для того чтобы защитить это летучее вещество от негативного воздействия ультрафиолетовых лучей, его помещают в пластиковые, стеклянные, металлические флаконы подальше от УФ.

Помещение, где предполагается размещение существенного количества ацетона, необходимо систематически проветривать и установить качественную вентиляцию.

Особенности химических свойств

Название данное соединение получило от латинского слова «ацетум», означающее в переводе «уксус». Дело в том, что химическая формула ацетона C3H6O появилась гораздо позже, чем было синтезировано само вещество. Его получали из ацетатов, а затем использовали для изготовления ледяной синтетической уксусной кислоты.

Первооткрывателем соединения считают Андреаса Либавиуса. В конце XVI века путем сухой перегонки ацетата свинца ему удалось получить вещество, химический состав которого был расшифрован только в 30-х годах XIX века.

Ацетон, формула которого СН3СОСН3, до начала XX века получали путем коксования древесины. После повышения спроса во время Первой мировой войны на это органическое соединение, стали появляться новые способы синтеза.

Ацетон (ГОСТ 2768-84) является технической жидкостью. По химической активности данное соединение является одним из самых реакционноспособных в классе кетонов. Под воздействием щелочей наблюдается адольная конденсация, в результате которой образуется диацетоновый спирт.

При пиролизе из него получают кетен. В реакции с циановодородом образуется ацетонцианидангидрин. Для пропанона характерно замещение атомов водорода на галогены, происходящее при повышенной температуре (либо в присутствии катализатора).

Способы получения

В настоящее время основное количество кислородсодержащего соединения получают из пропена. Технический ацетон (ГОСТ 2768-84) должен обладать определенными физическими и эксплуатационными характеристиками.

Кумольный способ состоит из трех стадий и предполагает производство ацетона из бензола. Сначала путем его алкилирования с пропеном получают кумол, затем окисляют полученный продукт до гидропероксида и расщепляют его под воздействием серной кислоты до ацетона и фенола.

Кроме того, это карбонильное соединение получают при каталитическом окислении изопропанола при температуре около 600 градусов по Цельсия. В качестве ускорителей процесса выступают металлическое серебро, медь, платина, никель.

Среди классических технологий производства ацетона особый интерес представляет реакция прямого окисления пропена. Данный процесс осуществляется при повышенном давлении и присутствии в качестве катализатора хлорида двухвалентного палладия.

Также можно получить ацетон путем брожения крахмала под воздействием бактерий Clostridium acetobutylicum. Кроме кетона среди продуктов реакции будет присутствовать бутанол. Среди недостатков этого варианта получения ацетона отметим несущественный процентный выход.

Заключение

Пропанон является типичным представителем карбонильных соединений. Потребители знакомы с ним как с растворителем и обезжиривателем. Он незаменим при изготовлении лаков, лекарственных препаратов, взрывчатых веществ. Именно ацетон входит в состав клея для кинопленки, является средством для очистки поверхностей от монтажной пены и суперклея, средством промывки инжекторных двигателей и способом повышения октанового числа горючего, и т.п.

Испарение – это переход жидкости в пар со свободной поверхности при температурах ниже точки кипения жидкости. Испарение происходит в результате теплового движения молекул жидкости. Скорость движения молекул колеблется в широких пределах, сильно отклоняясь в обе стороны от ее среднего значения. Часть молекул, имеющих достаточно большую кинетическую энергию, вырывается из поверхностного слоя жидкости в газовую (воздушную) среду. Избыточная энергия теряемых жидкостью молекул затрачивается на преодоление сил взаимодействия между молекулами и работу расширения (увеличения объема) при переходе жидкости в пар.

Испарение является эндотермическим процессом. Если к жидкости не подводится извне тепло, то в результате испарения она охлаждается. Скорость испарения определяется количеством пара, образующегося за единицу времени на единице поверхности жидкости. Это необходимо учитывать в производствах, связанных с применением, получением или переработкой легковоспламеняющихся жидкостей. Увеличение скорости испарения при повышении температуры приводит к более быстрому образованию взрывоопасных концентраций паров. Максимальная скорость испарения наблюдается при испарении в вакуум и в неограниченный объем. Это можно объяснить следующим образом. Наблюдаемая скорость процесса испарения является суммарной скоростью процесса перехода молекул из жидкой фазы V 1 и скоростью конденсации V 2 . Суммарный процесс равен разности этих двух скоростей: . При постоянной температуре V 1 не изменяется, а V 2 пропорциональна концентрации пара. При испарении в вакуум в пределе V 2 = 0 , т.е. суммарная скорость процесса максимальная.

Чем больше концентрация пара, тем выше скорость конденсации, следовательно, ниже суммарная скорость испарения. На поверхности раздела между жидкостью и ее насыщенным паром скорость испарения (суммарная) близка к нулю. Жидкость, находящаяся в закрытом сосуде, испаряясь, образует насыщенный пар. Насыщенным называется пар, находящийся в динамическом равновесии с жидкостью. Динамическое равновесие при данной температуре наступает тогда, когда число испаряющихся молекул жидкости равно числу конденсирующихся молекул. Насыщенный пар, выходя из открытого сосуда в воздух, разбавляется им и становится ненасыщенным. Следовательно, в возду

хе помещений, где находятся емкости с горячими жидкостями, имеется ненасыщенный пар этих жидкостей.

Насыщенные и ненасыщенные пары оказывают давление на стенки сосудов. Давлением насыщенного пара называют давление пара, находящегося в равновесии с жидкостью при данной температуре. Давление насыщенного пара всегда выше, чем ненасыщенного. Оно не зависит от количества жидкости, величины ее поверхности, формы сосуда, а зависит только от температуры и природы жидкости. С повышением температуры давление насыщенного пара жидкости увеличивается; при температуре кипения давление пара равно атмосферному. Для каждого значения температуры давление насыщенного пара индивидуальной (чистой) жидкости постоянно. Давление насыщенного пара смесей жидкостей (нефти, бензина, керосина и др.) при одной и той же температуре зависит от состава смеси. Оно увеличивается с увеличением содержания в жидкости низкокипящих продуктов.

Для большинства жидкостей давление насыщенного пара при различной температуре известно. Значения давления насыщенных паров некоторых жидкостей при различных температурах приведены в табл. 5.1.

Таблица 5.1

Давление насыщенных паров веществ при различных температурах

Вещество

Давление насыщенных паров, Па, при температуре, К

Бутилацетат

Бакинский авиационный бензин

Метиловый спирт

Сероуглерод

Скипидар

Этиловый спирт

Этиловый эфир

Этилацетат

Найденное по табл.


5.1 давление насыщенного пара жидкости является составной частью общего давления смеси паров с воздухом.

Допустим, что смесь паров с воздухом, образуемая над поверхностью сероуглерода в сосуде при 263 К, имеет давление 101080 Па. Тогда давление насыщенного пара сероуглерода при этой температуре равно 10773 Па. Следовательно, воздух в этой смеси имеет давление 101080 – 10773 = 90307 Па. С повышением температуры сероуглерода

давление насыщенных паров его увеличивается, давление воздуха уменьшается. Общее давление остается постоянным.

Часть общего давления, приходящаяся на долю данного газа или пара, называется парциальным. В данном случае давление паров сероуглерода (10773 Па) можно назвать парциальным давлением. Таким образом, общее давление паровоздушной смеси складывается из суммы парциальных давлений паров сероуглерода, кислорода и азота: Р пар + + = Р общ. Поскольку давление насыщенных паров составляет часть общего давления смеси их с воздухом, появляется возможность по известному общему давлению смеси и давлению паров определять концентрации паров жидкостей в воздухе.

Давление насыщенного пара жидкостей обусловлено числом молекул, ударяющихся о стенки сосуда, или концентрацией паров над поверхностью жидкости. Чем выше концентрация насыщенного пара, тем больше будет его давление. Связь между концентрацией насыщенного пара и его парциальным давлением можно найти следующим образом.

Допустим, что удалось бы отделить пар от воздуха, причем давление в той и другой частях осталось бы равным общему давлению Р общ. Тогда объемы, занимаемые паром и воздухом, соответственно уменьшились бы. Согласно закону Бойля – Мариотта, произведение давления газа на его объем при постоянной температуре есть величина постоянная, т.е. для нашего гипотетического случая получим:

.