Стандартное распределение. Нормальный (гауссовский) закон распределения. Вероятность попадания значения нормально распределённой случайной величины в заданный интервал

) играет осо-бо важную роль в теории вероятностей и чаще других применяется в решении практических задач. Его главная особенность в том, что он является предельным законом, к которому приближаются дру-гие законы распределения при весьма часто встречающихся типич-ных условиях. Например, сумма достаточно большого числа неза-висимых (или слабо зависимых) случайных величин приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем больше случайных величин суммируется.

Экспериментально доказано, что нормальному закону под-чиняются погрешности измерений, отклонения геометрических размеров и положения элементов строительных конструкций при их изготовлении и монтаже, изменчивость физико-механических характеристик материалов и нагру-зок, действующих на строительные конструкции.

Распределению Гаусса подчи-няются почти все случайные вели-чины, отклонение которых от сред-них значений вызывается большой совокупностью случайных факто-ров, каждый из которых в отдельности незначителен (центральная предельная теорема).

Нормальным распределением называется распределение случайной непрерывной величины, для которых плотность вероят-ностей имеет вид (рис. 18.1).

Рис. 18.1. Нормальный закон распределения при а 1 < a 2 .

(18.1)

где а и — параметры распределения.

Вероятностные характеристики случайной величины, распре-деленной по нормальному закону, равны:

Математическое ожидание (18.2)

Дисперсия (18.3)

Среднеквадратичное отклонение (18.4)

Коэффициент асимметрии А = 0 (18.5)

Эксцесс Е = 0. (18.6)

Параметр σ, входящий в распределение Гаусса равен сред-неквадратичному отношению слу-чайной величины. Величина а оп-ределяет положение центра рас-пределения (см. рис. 18.1), а величина а — ширину распределе-ния (рис. 18.2), т.е. статистический разброс вокруг средней величины.

Рис. 18.2. Нормальный закон распределения при σ 1 < σ 2 < σ 3

Вероятность попадания в заданный интервал (от x 1 до x 2) для нормального распределения, как и во всех случаях, определяется интегралом от плотности вероятности (18.1), который не выража-ется через элементарные функции и представляется специальной функцией, называется функцией Лапласа (интеграл вероятностей).

Одно из представлений интеграла вероятностей:

(18.7)

Величина и называется квантилем.

Видно, что Ф(х) — нечетная функция, т. е. Ф(-х) = -Ф(х). Значения этой функции вычислены и представлены в виде таблиц в технической и учебной литературе.


Функция распределения нормального закона (рис. 18.3) может быть выражена через ин-теграл вероятностей:

(18.9)

Рис. 18.2. Функция нормального закона распределения.

Вероятность попадания случайной величины, распределенной по нормальному закону, в интервал от х. до х, определяется выра-жением:

Следует заметить, что

Ф(0) = 0; Ф(∞) = 0,5; Ф(-∞) = -0,5.

При решении практических задач, связанных с распределе-нием, часто приходится рассматривать вероятность попадания в интервал, симметричный относительно математического ожидания, если длина этого интервала т.е. если сам интервал имеет грани-цу от до , имеем:

При решении практических задач границы отклонений слу-чайных величин выражаются через стандарт, среднеквадратичное отклонение, умноженное на некоторый множитель, определяющий границы области отклонений случайной величины.

Принимая и а также используя формулу (18.10) и таблицу Ф(х) (приложение № 1), получим

Эти формулы показывают , что если случайная величина име-ет нормальное распределение, то вероятность ее отклонения от сво-его среднего значения не более чем на σ составляет 68,27 %, не бо-лее чем на 2σ — 95,45 % и не более чем на Зσ — 99,73 %.

Поскольку величина 0,9973 близка к единице, практически считается невозможным отклонение нормального распределения случайной величины от математического ожидания более чем на Зσ. Это правило, справедливое только для нормального распределения, называется правилом трех сигм. Нарушение его имеет вероятность Р = 1 - 0,9973 = 0,0027. Этим правилом пользуются при установле-нии границ допустимых отклонений допусков геометрических ха-рактеристик изделий и конструкций.

Нормальное распределение (normal distribution ) - играет важную роль в анализе данных.

Иногда вместо термина нормальное распределение употребляют термин гауссовское распределение в честь К. Гаусса (более старые термины, практически не употребляемые в настоящее время: закон Гаусса, Гаусса-Лапласа распределение).

Одномерное нормальное распределение

Нормальное распределение имеет плотность::

В этой формуле , фиксированные параметры, - среднее , - стандартное отклонение .

Графики плотности при различных параметрах приведены .

Характеристическая функция нормального распределения имеет вид:

Дифференцируя характеристическую функцию и полагая t = 0 , получаем моменты любого порядка.

Кривая плотности нормального распределения симметрична относительно и имеет в этой точке единственный максимум, равный

Параметр стандартного отклонения меняется в пределах от 0 до ∞.

Среднее меняется в пределах от -∞ до +∞.

При увеличении параметра кривая растекается вдоль оси х , при стремлении к 0 сжимается вокруг среднего значения (параметр характеризует разброс, рассеяние).

При изменении кривая сдвигается вдоль оси х (см. графики).

Варьируя параметры и , мы получаем разнообразные модели случайных величин, возникающие в телефонии.

Типичное применение нормального закона в анализе, например, телекоммуникационных данных - моделирование сигналов, описание шумов, помех, ошибок, трафика.

Графики одномерного нормального распределения

Рисунок 1. График плотности нормального распределения: среднее равно 0, стандартное отклонение 1

Рисунок 2. График плотности стандартного нормального распределения с областями, содержащими 68% и 95% всех наблюдений

Рисунок 3. Графики плотностей нормальных распределений c нулевым средним и разными отклонениями (=0.5, =1, =2)

Рисунок 4 Графики двух нормальных распределений N(-2,2) и N(3,2).

Заметьте, центр распределения сдвинулся при изменении параметра .

Замечание

В программе STATISTICA под обозначением N(3,2) понимается нормальный или гауссов закон с параметрами: среднее = 3 и стандартное отклонение =2.

В литературе иногда второй параметр трактуется как дисперсия , т.е. квадрат стандартного отклонения.

Вычисления процентных точек нормального распределения с помощью вероятностного калькулятора STATISTICA

С помощью вероятностного калькулятора STATISTICA можно вычислить различные характеристики распределений, не прибегая к громоздким таблицам, используемым в старых книгах.

Шаг 1. Запускаем Анализ / Вероятностный калькулятор / Распределения .

В разделе распределения выберем нормальное .

Рисунок 5. Запуск калькулятора вероятностных распределений

Шаг 2. Указываем интересующие нас параметры.

Например, мы хотим вычислить 95% квантиль нормального распределения со средним 0 и стандартным отклонением 1.

Укажем эти параметры в полях калькулятора (см. поля калькулятора среднее и стандартное отклонение).

Введем параметр p=0,95.

Галочка «Обратная ф.р». отобразится автоматически. Поставим галочку «График».

Нажмем кнопку «Вычислить» в правом верхнем углу.

Рисунок 6. Настройка параметров

Шаг 3. В поле Z получаем результат: значение квантиля равно 1,64 (см. следующее окно).

Рисунок 7. Просмотр результата работы калькулятора

Рисунок 8. Графики плотности и функции распределения. Прямая x=1,644485

Рисунок 9. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=-1.5, x=-1, x=-0.5, x=0

Рисунок 10. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=0.5, x=1, x=1.5, x=2

Оценка параметров нормального распределения

Значения нормального распределения можно вычислить с помощью интерактивного калькулятора .

Двумерное нормальное распределение

Одномерное нормальное распределение естественно обобщается на двумерное нормальное распределение.

Например, если вы рассматриваете сигнал только в одной точке, то вам достаточно одномерного распределения, в двух точках - двумерного, в трех точках - трехмерного и т.д.

Общая формула для двумерного нормального распределения имеет вид:

Где - парная корреляция между X 1 и X 2 ;

X 1 соответственно;

Среднее и стандартное отклонение переменной X 2 соответственно.

Если случайные величины Х 1 и Х 2 независимы, то корреляция равна 0, = 0, соответственно средний член в экспоненте зануляется, и мы имеем:

f(x 1 ,x 2) = f(x 1)*f(x 2)

Для независимых величин двумерная плотность распадается в произведение двух одномерных плотностей.

Графики плотности двумерного нормального распределения

Рисунок 11. График плотности двумерного нормального распределения (нулевой вектор средних, единичная ковариационная матрица)

Рисунок 12. Сечение графика плотности двумерного нормального распределения плоскостью z=0.05

Рисунок 13. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной)

Рисунок 14. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной) плоскостью z= 0.05

Рисунок 15. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной)

Рисунок 16. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной) плоскостью z=0.05

Рисунок 17. Сечения графиков плотностей двумерного нормального распределения плоскостью z=0.05

Для лучшего понимания двумерного нормального распределения попробуйте решить следующую задачу.

Задача. Посмотрите на график двумерного нормального распределения. Подумайте, можно ли его представить, как вращение графика одномерного нормального распределения? Когда нужно применить прием деформации?

Определение 1

Случайная величина $X$ имеет нормальное распределение (распределение Гаусса), если плотность её распределения определяется формулой:

\[\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}\]

Здесь $aϵR$ -- математическое ожидание, а $\sigma >0$ -- среднее квадратическое отклонение.

Плотность нормального распределения.

Покажем, что эта функция действительно является плотностью распределения. Для этого проверим следующее условие:

Рассмотрим несобственный интеграл $\int\limits^{+\infty }_{-\infty }{\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}dx}$.

Сделаем замену: $\frac{x-a}{\sigma }=t,\ x=\sigma t+a,\ dx=\sigma dt$.

Так как $f\left(t\right)=e^{\frac{-t^2}{2}}$ четная функция, то

Равенство выполняется, значит, функция $\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}$ действительно является плотностью распределения некоторой случайной величины.

Рассмотрим некоторые простейшие свойства функции плотности вероятности нормального распределения $\varphi \left(x\right)$:

  1. График функции плотности вероятности нормального распределения симметричен относительно прямой $x=a$.
  2. Функция $\varphi \left(x\right)$ достигает максимума при $x=a$, при этом $\varphi \left(a\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(a-a)}^2}{2{\sigma }^2}}=\frac{1}{\sqrt{2\pi }\sigma }$
  3. Функция $\varphi \left(x\right)$ убывает, при $x>a$, и возрастает, при $x
  4. Функция $\varphi \left(x\right)$ имеет точки перегиба при $x=a+\sigma $ и $x=a-\sigma $.
  5. Функция $\varphi \left(x\right)$ асимптотически приближается к оси $Ox$ при $x\to \pm \infty $.
  6. Схематический график выглядит следующим образом (рис. 1).

Рисунок 1. Рис. 1. График плотности нормального распределения

Заметим, что, если $a=0$, то график функции симметричен относительно оси $Oy$. Следовательно, функция $\varphi \left(x\right)$ четна.

Функция нормального распределения вероятности.

Для нахождения функции распределения вероятности при нормальном распределении воспользуемся следующей формулой:

Следовательно,

Определение 2

Функция $F(x)$ называется стандартным нормальным распределением, если $a=0,\ \sigma =1$, то есть:

Здесь $Ф\left(x\right)=\frac{1}{\sqrt{2\pi }}\int\limits^x_0{e^{\frac{-t^2}{2}}dt}$ - функция Лапласса.

Определение 3

Функция $Ф\left(x\right)=\frac{1}{\sqrt{2\pi }}\int\limits^x_0{e^{\frac{-t^2}{2}}dt}$ называется интегралом вероятности.

Числовые характеристики нормального распределения.

Математическое ожидание: $M\left(X\right)=a$.

Дисперсия : $D\left(X\right)={\sigma }^2$.

Среднее квадратическое распределение: $\sigma \left(X\right)=\sigma $.

Пример 1

Пример решения задачи на понятие нормального распределения.

Задача 1 : Длина пути $X$ представляет собой случайную непрерывную величину. $X$ распределена по нормальному закону распределения среднее значение которого равно $4$ километра, а среднее квадратическое отклонение равно $100$ метров.

  1. Найти функцию плотности распределения $X$.
  2. Построить схематически график плотности распределения.
  3. Найти функцию распределения случайной величины $X$.
  4. Найти дисперсию.
  1. Для начала представим все величины в одном измерении: 100м=0,1км

Из определения 1, получим:

\[\varphi \left(x\right)=\frac{1}{0,1\sqrt{2\pi }}e^{\frac{-{(x-4)}^2}{0,02}}\]

(так как $a=4\ км,\ \sigma =0,1\ км)$

  1. Используя свойства функции плотности распределения, имеем, что график функции $\varphi \left(x\right)$ симметричен относительно прямой $x=4$.

Максимум функция достигает в точке $\left(a,\frac{1}{\sqrt{2\pi }\sigma }\right)=(4,\ \frac{1}{0,1\sqrt{2\pi }})$

Схематический график имеет вид:

Рисунок 2.

  1. По определению функции распределения $F\left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }\int\limits^x_{-\infty }{e^{\frac{-{(t-a)}^2}{2{\sigma }^2}}dt}$, имеем:
\
  1. $D\left(X\right)={\sigma }^2=0,01$.

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Найдем функцию распределения F(x) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдем экстремум функции.

Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно .

Построим график функции плотности распределения.

Построены графики при т =0 и трех возможных значениях среднего квадратичного отклонения s = 1, s = 2 и s = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается..

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и s = 1 кривая называется нормированной . Уравнение нормированной кривой:

Для краткости говорят, что СВ Х подчиняется закону N(m, s), т.е. Х ~ N(m, s). Параметры m и s совпадают с основными характеристиками распределения: m = m X , s = s Х = . Если СВ Х ~ N(0, 1), то она называется стандартизованной нормальной величиной . ФР стандартизованной нормальной величиной называется функцией Лапласа и обозначается как Ф(x) . С ее помощью можно вычислять интервальные вероятности для нормального распределения N(m, s):

P(x 1 £ X < x 2) = Ф - Ф .

При решении задач на нормальное распределение часто требуется использовать табличные значения функции Лапласа. Поскольку для функции Лапласа справедливо соотношение Ф(-х) = 1 - Ф(х) , то достаточно иметь табличные значения функции Ф(х) только для положительных значений аргумента.

Для вероятности попадания на симметричный относительно математического ожидания интервал справедлива формула: P(|X - m X | < e) = 2×Ф(e/s) - 1.

Центральные моменты нормального распределения удовлетворяют рекуррентному соотношению: m n +2 = (n+1)s 2 m n , n = 1, 2, ... . Отсюда следует, что все центральные моменты нечетного порядка равны нулю (так как m 1 = 0).

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

Ниже показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

2) Ф(-х ) = - Ф(х );

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Ниже показан график нормированной функции Лапласа.

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм .

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

Пример. Поезд состоит из 100 вагонов. Масса каждого вагона – случайная величина, распределенная по нормальному закону с математическим ожидание а = 65 т и средним квадратичным отклонением s = 0,9 т. Локомотив может везти состав массой не более 6600 т, в противном случае необходимо прицеплять второй локомотив. Найти вероятность того, что второй локомотив не потребуется.

Второй локомотив не потребуется, если отклонение массы состава от ожидаемого (100×65 = 6500) не превосходит 6600 – 6500 = 100 т.

Т.к. масса каждого вагона имеет нормальное распределение, то и масса всего состава тоже будет распределена нормально.

Получаем:

Пример. Нормально распределенная случайная величина Х задана своими параметрами – а =2 – математическое ожидание и s = 1 – среднее квадратическое отклонение. Требуется написать плотность вероятности и построить ее график, найти вероятность того, Х примет значение из интервала (1; 3), найти вероятность того, что Х отклонится (по модулю) от математического ожидания не более чем на 2.

Плотность распределения имеет вид:

Построим график:

Найдем вероятность попадания случайной величины в интервал (1; 3).

Найдем вероятность отклонение случайной величины от математического ожидания на величину, не большую чем 2.

Тот же результат может быть получен с использованием нормированной функции Лапласа.

Лекция 8 Закон больших чисел (Раздел 2)

План лекции

Центральная предельная теорема (общая формулировка и частная формулировка для независимых одинаково распределенных случайных величин).

Неравенство Чебышева.

Закон больших чисел в форме Чебышева.

Понятие частоты события.

Статистическое понимание вероятности.

Закон больших чисел в форме Бернулли.

Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачивает случайный характер и становится закономерным (иначе говоря, случайные отклонения от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел .

ЗАКОН БОЛЬШИХ ЧИСЕЛ общий принцип, в силу которого совместное действие случайных факторов приводит при некоторых весьма общих условиях к результату, почти не зависящему от случая. Первым примером действия этого принципа может служить сближение частоты наступления случайного события с его вероятностью при возрастании числа испытаний (часто использующееся на практике, например, при использовании частоты встречаемости какого-либо качества респондента в выборке как выборочной оценки соответствующей вероятности).

Сущность закона больших чисел состоит в том, что при большом числе независимых опытов частота появления какого-то события близка к его вероятности.

Центральная предельная теорема (ЦПТ) (в формулировке Ляпунова А.М. для одинаково распределенных СВ). Если попарно независимые СВ X 1 , X 2 , ..., X n , ... имеют одинаковый закон распределения с конечными числовыми характеристиками M = m и D = s 2 , то при n ® ¥ закон распределения СВ неограниченно приближается к нормальному закону N(n×m, ).

Следствие. Если в условии теоремы СВ , то при n ® ¥ закон распределения СВ Y неограниченно приближается к нормальному закону N(m, s/ ).

Теорема Муавра-Лапласа. Пусть СВ К - число “успехов” в n испытаниях по схеме Бернулли. Тогда при n ® ¥ и фиксированном значении вероятности “успеха” в одном испытании p закон распределения СВ K неограниченно приближается к нормальному закону N(n×p, ).

Следствие. Если в условии теоремы вместо СВ К рассмотреть СВ К/n - частоту “успехов” в n испытаниях по схеме Бернулли, то ее закон распределения при n ® ¥ и фиксированном значении p неограниченно приближается к нормальному закону N(p, ).

Замечание. Пусть СВ К - число “успехов” в n испытаниях по схеме Бернулли. Законом распределения такой СВ является биноминальный закон. Тогда при n ® ¥ биноминальный закон имеет два предельных распределения:

n распределение Пуассона (при n ® ¥ и l = n×p = const);

n распределение Гаусса N(n×p, ) (при n ® ¥ и p = const).

Пример. Вероятность “успеха” в одном испытании всего лишь p = 0,8. Сколько нужно провести испытаний, чтобы с вероятностью не менее 0,9 можно ожидать, что наблюдаемая частота “успеха” в испытаниях по схеме Бернулли отклонится от вероятности p не более чем на e = 0,01?

Решение. Для сравнения решим задачу двумя способами.

Нормальный закон распределения (часто называемый законом Гаусса) играет исключительно важную роль в теории вероятностей и занимает среди других законов распределения особое положение. Это – наиболее часто встречающийся на практике закон распределения. Главная особенность, выделяющая нормальный закон среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Можно доказать, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, ошибки стрельбы и т.д., могут быть представлены как суммы весьма большого числа сравнительно малых слагаемых – элементарных ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Каким бы законам распределения ни были подчинены отдельные элементарные ошибки, особенности этих распределений в сумме большого числа слагаемых нивелируются, и сумма оказывается подчиненной закону, близкому к нормальному. Основное ограничение, налагаемое на суммируемые ошибки, состоит в том, чтобы они все равномерно играли в общей сумме относительно малую роль. Если это условие не выполняется и, например, одна из случайных ошибок окажется по своему влиянию на сумму резко превалирующей над всеми другими, то закон распределения этой превалирующей ошибки наложит свое влияние на сумму и определит в основных чертах её закон распределения.

Теоремы, устанавливающие нормальный закон как предельный для суммы независимых равномерно малых случайных слагаемых, будут подробнее рассмотрены в главе 13.

Нормальный закон распределения характеризуется плотностью вероятности вида:

Кривая распределения по нормальному закону имеет симметричный холмообразный вид (рис. 6.1.1). Максимальная ордината кривой, равная , соответствует точке ; по мере удаления от точки плотность распределения падает, и при кривая асимптотически приближается к оси абсцисс.

Выясним смысл численных параметров и , входящих в выражение нормального закона (6.1.1); докажем, что величина есть не что иное, как математическое ожидание, а величина - среднее квадратическое отклонение величины . Для этого вычислим основные числовые характеристики величины - математическое ожидание и дисперсию.

Применяя замену переменной

Нетрудно убедиться, что первый из двух интервалов в формуле (6.1.2) равен нулю; второй представляет собой известный интеграл Эйлера-Пуассона:

Следовательно,

т.е. параметр представляет собой математическое ожидание величины . Этот параметр, особенно в задачах стрельбы, часто называют центром рассеивания (сокращенно – ц. р.).

Вычислим дисперсию величины :

.

Применив снова замену переменной

Интегрируя по частям, получим:

Первое слагаемое в фигурных скобках равно нулю (так как при убывает быстрее, чем возрастает любая степень ), второе слагаемое по формуле (6.1.3) равно , откуда

Следовательно, параметр в формуле (6.1.1) есть не что иное, как среднее квадратическое отклонение величины .

Выясним смысл параметров и нормального распределения. Непосредственно из формулы (6.1.1) видно, что центром симметрии распределения является центр рассеивания . Это ясно из того, что при изменении знака разности на обратный выражение (6.1.1) не меняется. Если изменять центр рассеивания , кривая распределения будет смещаться вдоль оси абсцисс, не изменяя своей формы (рис. 6.1.2). Центр рассеивания характеризует положение распределения на оси абсцисс.

Размерность центра рассеивания – та же, что размерность случайной величины .

Параметр характеризует не положение, а самую форму кривой распределения. Это есть характеристика рассеивания. Наибольшая ордината кривой распределения обратно пропорциональна ; при увеличении максимальная ордината уменьшается. Так как площадь кривой распределения всегда должна оставаться равной единице, то при увеличении кривая распределения становится более плоской, растягиваясь вдоль оси абсцисс; напротив, при уменьшении кривая распределения вытягивается вверх, одновременно сжимаясь с боков, и становится более иглообразной. На рис. 6.1.3 показаны три нормальные кривые (I, II, III) при ; из них кривая I соответствует самому большому, а кривая III – самому малому значению . Изменение параметра равносильно изменению масштаба кривой распределения – увеличению масштаба по одной оси и такому же уменьшению по другой.