Как распознать осенние с помощью индикатора. Индикаторы химических реакций. Изменение окраски индикаторов в зависимости от pH

Изменение окраски индикаторов в зависимости от pH

Кислотно-основные индикаторы - это соединения, окраска которых меняется в зависимости от кислотности среды.

Например, лакмус в кислой среде окрашен в красный цвет, а в щелочной - в синий. Это свойство можно использовать для быстрой оценки pH растворов.

Кислотно-основные индикаторы находят широкое применение в химии. Известно, например, что многие реакции по-разному протекают в кислой и щелочной средах. Регулируя pH, можно изменить направление реакции. Индикаторы можно использовать не только для качественной, но и для количественной оценки содержания кислоты в растворе (метод кислотно-основного титрования).

Применение индикаторов не ограничивается "чистой" химией. Кислотность среды необходимо контролировать во многих производственных процессах, при оценке качества пищевых продуктов, в медицине и т. д.

В таблице 1 указаны наиболее "популярные" индикаторы и отмечена их окраска в нейтральной, кислой и щелочной средах.


Таблица 1

Метилоранж

Фенолфталеин


В действительности, каждый индикатор характеризуется своим интервалом рН, в котором происходит изменение цвета (интервал перехода). Изменение окраски происходит из-за превращения одной формы индикатора (молекулярной) в другую (ионную). По мере понижения кислотности среды (с ростом рН) концентрация ионной формы повышается, а молекулярной - падает. В таблице 2 перечислены некоторые кислотно-основные индикаторы и соответствующие интервалы перехода.

Таблица 2

Среди многообразия органических веществ встречаются особые соединения, которым характерны изменения окраски в различной среде. До появления современных электронных pH-метров индикаторы были незаменимыми «инструментами» для определения кислотно-основных показателей среды, и продолжают использоваться в лабораторной практике в качестве вспомогательных веществ в аналитической химии, а также при отсутствии необходимого оборудования.

Для чего нужны индикаторы?

Изначально свойство данных соединений изменять цвет в различной среде широко применялось для визуального определения кислотно-основных свойств веществ в растворе, что помогало определить не только характер среды, но и сделать вывод об образующихся продуктах реакции. Растворы индикаторов продолжают использоваться в лабораторной практике для определения концентрации веществ методом титрования и позволяют научиться использовать подручные способы за неимением современных pH-метров.

Существует несколько десятков подобного рода веществ, каждый из которых чувствителен к довольно узкой области: обычно она не превышает 3 пунктов по шкале информативности. Благодаря такому многообразию хромофоров и их малой активности между собой ученым удалось создать универсальные индикаторы, широко применяемые в лабораторных и производственных условиях.

Наиболее используемые индикаторы pH

Примечательно, что помимо идентификационного свойства, данные соединения обладают хорошей красящей способностью, что позволяет использовать их для покраски тканей в текстильной промышленности. Из большого числа индикаторов цвета в химии самыми известными и используемыми являются метиловый оранжевый (метилоранж) и фенолфталеин. Большинство других хромофоров в настоящее время используются в смеси друг с другом, либо для специфических синтезов и реакции.

Метиловый оранжевый

Многие красители получили название благодаря своим основным цветам в нейтральной среде, что присуще и этому хромофору. Метиловый оранжевый является азокрасителем, имеющим группировку - N = N ‒ в своем составе, которая отвечает за переход цвета индикатора в красный в и в желтый - в щелочной. Сами азосоединения не являются сильными основаниями, однако присутствие электродонорных групп (‒ OH, ‒ NH 2 , ‒ NH (CH 3), ‒ N (CH 3) 2 и др.) увеличивает основность одного из атомов азота, который становится способен присоединять протоны водорода по донорно-акцепторному принципу. Поэтому при изменении концентраций ионов H + в растворе можно наблюдать изменение окраски кислотно-основного индикатора.

Подробнее о получении метилового оранжевого

Получают метиловый оранжевый в реакции с диазотирования сульфаниловой кислоты C 6 H 4 (SO 3 H)NH 2 с последующим сочетанием с диметиланилином C 6 H 5 N(CH 3) 2 . Сульфаниловую кислоту растворяют в растворе натриевой щелочи, добавляя нитрит натрия NaNO 2 , а затем охлаждают льдом для проведения синтеза в максимально близких к 0°C температурах и приливают соляную кислоту HCl. Далее готовят отдельный раствор диметиланилина в HCl, который охлажденным вливают в первый раствор, получая краситель. Его дополнительно подщелачивают, и из раствора выпадают в осадок темно-оранжевые кристаллы, которые по истечении нескольких часов отфильтровывают и сушат на водяной бане.

Фенолфталеин

Свое название данный хромофор получил из сложения наименований двух реагентов, которые участвуют при его синтезе. Цвет индикатора примечателен изменением своей окраски в щелочной среде с приобретением малинового (красно-фиолетового, малиново-красного) оттенка, который обесцвечивается при сильном щелочении раствора. Фенолфталеин может принимать несколько форм в зависимости от показателей pH среды, причем в сильнокислых средах он имеет оранжевую окраску.

Этот хромофор получают путем конденсации фенола и фталиевого ангидрида в присутствии хлорида цинка ZnCl 2 или концентрированной серной кислоты H 2 SO 4 . В твердом состоянии молекулы фенолфталеина являются бесцветными кристаллами.

Ранее фенолфталеин активно использовали при создании слабительных веществ, однако постепенно его применение значительно сократилось в связи с установленными кумулятивными свойствами.

Лакмус

Этот индикатор стал одним из первых реактивов, используемых на твердых носителях. Лакмус является сложной смесью природных соединений, которую получают из некоторых видов лишайников. Его используют не только как но и как средство для определения pH среды. Это один из первых индикаторов, который начал использоваться человеком в химической практике: его применяют в виде водных растворов или пропитанных им полосок фильтровальной бумаги. Лакмус в твердом состоянии является темным порошком со слабым аммиачным запахом. При растворении в чистой воде цвет индикатора принимает фиолетовое окрашивание, а при подкислении дает красный цвет. В щелочной среде лакмус переходит в синий, что позволяет использовать его как универсальный индикатор для общего определения показателя среды.

Точно установить механизм и характер реакции, протекающих при изменении pH в структурах компонентов лакмуса не представляется возможным, так как в него может входить до 15 различных соединений, причем некоторые из них могут быть неразделимыми действующими веществами, что усложняет их индивидуальные исследования химических и физических свойств.

Универсальная индикаторная бумага

С развитием науки и появлением индикаторных бумаг установление показателей среды многократно упростилось, поскольку теперь не нужно было иметь готовые жидкие реактивы для каких-либо полевых исследований, чем до сих пор успешно пользуются ученые и криминалисты. Так, на смену растворам пришли универсальные индикаторные бумаги, которые благодаря широкому спектру действия практически полностью убрали необходимость использования любых других кислотно-основных индикаторов.

Состав пропитанных полосок может отличаться у различных производителей, поэтому примерный список входящих веществ может быть следующим:

  • фенолфталеин (0-3,0 и 8,2-11);
  • (ди)метиловый желтый (2,9-4,0);
  • метиловый оранжевый (3,1-4,4);
  • метиловый красный (4,2-6,2);
  • бромтимоловый синий (6,0-7,8);
  • α‒нафтолфталеин (7,3-8,7);
  • тимоловый синий (8,0-9,6);
  • крезолфталеин (8,2-9,8).

На упаковке обязательно приведены эталоны цветной шкалы, позволяющие определить pH среды от 0 до 12 (где-то 14) с точностью до одной целой.

Помимо прочего, данные соединения могут использоваться совместно в водных и водно-спиртовых растворах, что делает применение таких смесей очень удобным. Однако некоторые из этих веществ могут быть плохо растворимы в воде, поэтому необходимо подбирать универсальный органический растворитель.

Благодаря своим свойствам кислотно-основные индикаторы нашли свое применение во многих областях науки, а их многообразие позволило создать универсальные смеси, чувствительные к широкой области показателей pH.

Существуют различные методы определения концентрации (точнее активности) ионов водорода (и, соответственно, концентрации гидроксид-ионов). Один из простейших (колориметрический) основан на использовании кислотно-основных индикаторов. В качестве таких индикаторов могут служить многие органические кислоты и основания, которые изменяют свою окраску в некотором узком интервале значений рН.

Индикаторы представляют собой слабые кислоты или основания, которые в недиссоциированной и в диссоциированной (ионной) формах имеют разную окраску.

Пример.

1.Фенолфталеин представляет собой кислоту, которая в молекулярной форме (HJnd) при рН8,1 бесцветна. Анионы фенолфталеина (Jnd -) при рН9,6 имеют красно-фиолетовую окраску:

H Jnd  H + + Jnd -

Бесцветный  красно-фиолетовый

рН8,1 рН9,6

При уменьшении концентрации ионов Н + и увеличении концентрации ионовOH - молекулярная форма фенолфталеина переходит в анионную из-за отрыва от молекул иона водорода и связывания его с гидроксид-ионом в воду. Поэтому при рН9,6 раствор в присутствии фенолфталеина приобретает красно-фиолетовую окраску. Наоборот, в кислотных растворах при рН8,1 равновесие смещается в сторону молекулярной формы индикатора, не имеющей окраски.

2.Метиловый оранжевый представляет собой слабое основание JndOH, которое в молекулярной форме при рН 4,4 имеет желтый цвет. Катионы Jnd + при рН3,0 окрашивают раствор в красный цвет:

JndOH  Jnd + + OH -

желтый  красный

рН4,4 рН3,0

Кислотной формой индикатора называют форму, которая преобладает в кислотных растворах, а основной формой – ту, которая существует в основных (щелочных) растворах. В некотором промежутке значений рН в растворе может одновременно находиться в равновесии некоторое количество обеих форм индикатора, вследствие чего возникает переходная окраска индикатора, - это интервал рН перехода окраски индикатора, или просто интервал перехода индикатора.

В табл.1 показаны интервалы перехода некоторых часто используемых индикаторов.

Таблица 1

Кислотно-основные индикаторы

Индикатор

Значение рН

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Тимоловый синий

Метиловый оранжевый

желто-оранжевая

Бромфеноловый синий

Ализариновый красный

фиолетовая

Метиловый красный

Феноловый красный

Фенолфталеин

бесцветная

красная (розовая)

Ализариновый желтый

бледно-желтая

желто-коричн-евая

Индиго карминовый

11,6-14,0 14- желтая

Для быстрого определения рН удобно также пользоваться раствором универсального индикатора, представляющего собой смесь различных индикаторов и имеющего большой интервал перехода (значения рН от 1 до 10). На основе универсального индикатора промышленностью выпускаются специальные бумажные ленты для определения рН у растворов путем сравнения со специальной шкалой изменения их окраски под действием испытуемого раствора.

В колориметрическом методе для точного определения рН применяются стандартные буферные растворы, значение водородного показателя которых точно известно и постоянно.

Буферными растворами называются смеси слабых кислот или оснований с их солями. Такие смеси сохраняют определенное значение рН как при разбавлении, так и при прибавлении небольших количеств сильных кислот или щелочей.

В кислой среде раствора рН < 7, в нейтральной среде рН = 7, в щелочной рН > 7. Чем меньше рН, тем больше кислотность раствора. При значениях рН > 7 говорят о щелочности раствора.

Существуют различные методы определения рН раствора. Качественно характер среды раствора определяют с помощью индикаторов. Индикаторы – вещества, которые обратимо изменяют свой цвет в зависимости от среды раствора. На практике чаще всего применяют лакмус, метиловый оранжевый, фенолфталеин и универсальный индикатор (табл. 2).

Таблица 2

Окраска индикаторов в различных средах растворов

Водородный показатель имеет очень важное значение для медицины, его отклонение от нормальных величин даже на 0,01 единицы свидетельствует о патологических процессах в организме. При нормальной кислотности желудочный сок имеет рН = 1,7; кровь человека имеет рН = 7,4; слюна – рН = 6,9.

Реакции ионного обмена и условия их протекания

Поскольку молекулы электролитов в растворах распадаются на ионы, то и реакции в растворах электролитов протекают между ионами. Реакции ионного обмена – это реакции между ионами, образовавшимися в результате диссоциации электролитов. Сущность таких реакций заключается в связывании ионов путем образования слабого электролита. Другими словами, реакция ионного обмена имеет смысл и протекает практически до конца, если в результате нее образуются слабые электролиты (осадок, газ, Н 2 О и др.). Если в растворе нет ионов, которые могут связываться между собой с образованием слабого электролита, то реакция обратима; уравнения таких реакций обмена не пишут.

При записи реакций ионного обмена используют молекулярную, полную ионную и сокращенную ионную формы. Пример записи реакции ионного обмена в трех формах:

K 2 SO 4 + BaCl 2 = BaSO 4 + 2KCl,

2K + + SO 4 2– + Ba 2+ + 2Cl – = BaSO 4 + 2K + + 2Cl – ,

Ba 2+ + SO 4 2– = BaSO 4 .

Правила составления уравнений ионных реакций

1. Формулы слабых электролитов записывают в молекулярном виде, сильных – в ионном.

2. Для реакции берут растворы веществ, поэтому даже малорастворимые вещества в случае реагентов записывают в виде ионов.

3. Если малорастворимое вещество образуется в результате реакции, то при записи ионного уравнения его считают нерастворимым.

4. Сумма зарядов ионов в левой части уравнения должна быть равна сумме зарядов ионов в правой части.

Тест по теме «Теория электролитической диссоциации. Реакции ионного обмена»

1. Реакция, которая происходит при растворении гидроксида магния в серной кислоте, описывается сокращенным ионным уравнением:

а) Mg 2+ + SO 4 2– = MgSO 4 ;

б) H + + OH – = H 2 O;

в) Mg(OH) 2 + 2H + = Mg 2+ + 2H 2 O;

г) Mg(OH) 2 + SO 4 2– = MgSO 4 + 2OH – .

2. В четырех сосудах содержится по одному литру 1М растворов перечисленных ниже веществ. В каком растворе содержится больше всего ионов?

а) Сульфат калия; б) гидроксид калия;

в) фосфорная кислота; г) этиловый спирт.

3. Степень диссоциации не зависит от:

а) объема раствора; б) природы электролита;

в) растворителя; г) концентрации.

4. Сокращенное ионное уравнение

Al 3+ + 3OH – = Al(OH) 3

соответствует взаимодействию:

а) хлорида алюминия с водой;

б) хлорида алюминия с гидроксидом калия;

в) алюминия с водой;

г) алюминия с гидроксидом калия.

5. Электролит, который не диссоциирует ступенчато, – это:

а) гидроксид магния; б) фосфорная кислота;

в) гидроксид калия; г) сульфат натрия.

6. Слабым электролитом является:

а) гидроксид бария;

б) гидроксид алюминия;

в) плавиковая кислота;

г) йодоводородная кислота.

7. Сумма коэффициентов в кратком ионном уравнении взаимодействия баритовой воды и углекислого газа равна:

а) 6; б) 4; в) 7; г) 8.

8. В растворе не могут находиться следующие пары веществ:

а) хлорид меди и гидроксид натрия;

б) хлорид калия и гидроксид натрия;

в) соляная кислота и гидроксид натрия;

г) серная кислота и хлорид бария.

9. Вещество, добавление которого к воде не изменит ее электропроводности, – это:

а) уксусная кислота; б) хлорид серебра;

в) серная кислота; г) хлорид калия.

10. Как будет выглядеть график зависимости накала электрической лампочки, включенной в цепь, от времени, если электроды погружены в раствор известковой воды, через который длительное время пропускают углекислый газ?

а) Линейное возрастание;

б) линейное убывание;

в) сначала убывание, затем возрастание;

г) сначала возрастание, затем убывание.

ИНДИКАТОРЫ (позднелат. indicator - указатель), хим. в-ва, изменяющие окраску, люминесценцию или образующие осадок при изменении концентрации к.-л. компонента в р-ре. Указывают на определенное состояние системы или на момент достижения этого состояния. Различают индикаторы обратимые и необратимые. Изменение окраски первых при изменении состояния системы (напр., фенолфталеина при изменении рН среды) м. б. повторено многократно. Необратимые индикаторы подвергаются необратимым хим. превращениям, напр., азосоединения при окислении ионами BrO 3 - разрушаются. Индикаторы, к-рые вводят в исследуемый р-р, наз. внутренними, в отличие от внешних, р-цию с к-рыми проводят вне анализируемой смеси. В последнем случае одну или неск. капель анализируемого р-ра помещают на бумажку, пропитанную индикатором, или смешивают их на белой фарфоровой пластинке с каплей индикатора. И ндикаторы применяют чаще всего для установления конца к.-л. хим. р-ции, гл. обр. конечной точки титрования (к. т. т.). В соответствии с титриметрич. методами различают кислотно-основные, адсорбц., окислит.-восстановит. и комплексонометрич. индикаторы. представляют собой р-римые орг соед., к-рые меняют свой цвет или люминесценцию в зависимости от концентрации ионов Н + (рН среды). Примен. для установления конца р-ции между к-тами и основаниями (в т. ч. при кислотно-основном титровании) или др. р-ций, если в них участвуют ионы Н + , а также для колориметрич. определения рН водных р-ров. Наиб. важные кислотно-основные индикаторы приведены в табл. 1. Причина изменения цвета индикаторов в том, что присоединение или отдача протонов его молекулами связаны с заменой одних хромофорных групп другими или с появлением новых хромофорных групп. Если индикатор слабая к-та HIn, то в водном р-ре имеет место равновесие : HIn + Н 2 О D In - + Н 3 О + . Если индикатор - слабое основание In, то: In + H 2 O D HIn + + ОН - . В общем виде можно записать: In a + Н 2 О D In b + Н 3 О + , где In a и In b - соотв. кислая и основная формы индикатора, к-рые окрашены различно. Константа равновесия этого процесса К ln = / наз. константой индикатора. Цвет р-ра зависит от соотношения /, к-рое определяется рН р-ра.

Считают, что цвет одной формы индикатора заметен, если ее концентрация в 10 раз превышает концентрацию др. формы, т.е. если отношение / = /K ln равно 0,1 или 10. Изменение цвета индикатора отмечается в области рН = рК lп b 1, к-рый наз. интервалом перехода индикатора. Изменение наиб. отчетливо, когда = и К ln = [Н 3 О] + , т.е. при рН = рК ln . Значение рН, при к-ром обычно заканчивается титрование , наз. показателем титрования рТ. Индикаторы для титрования подбирают таким образом, чтобы интервал перехода окраски включал значение рН, какое должен иметь р-р в точке эквивалентности. Часто это значение рН не совпадает с рТ используемого индикатора, что приводит к т. наз. индикаторной ошибке. Если в к. т. т. остается избыток неоттитрованного слабого основания или к-ты, ошибка наз. соотв. основной или кислотной. Чувствительность индикатора - концентрация (в моль /л) определяемого иона (в данном случае Н + или ОН - ) в точке наиб. резкого перехода окраски. Различают: чувствительные к к-там индикаторы с интервалом перехода в области щелочных значений рН (напр., фенолфталеин , тимолфталеин); чувствительные к основаниям индикаторы с интервалом перехода в кислой области (как у диметилового желтого, метилового оранжевого и др.); нейтральные индикаторы, интервал перехода к-рых находится ок. рН 7 (нейтральный красный, феноловый красный и др.). И ндикаторы бывают с одной или двумя окрашенными формами; такие индикаторы наз. соотв. одноцветными и двухцветными. Наиб. четкое изменение окраски наблюдалось бы у тех индикаторов, кислотная и основная формы к-рых окрашены в дополнит. цвета. Однако таких индикаторов не существует. Поэтому, добавляя краситель , изменяют соответствующим образом окраски обеих форм. Так, у метилового красного переход от красного к желтому происходит в интервале 2 единиц рН, а если к р-ру добавить метиленовый синий , то переход окраски от красно-фиолетовой к зеленой наблюдается резко и отчетливо при рН 5,3. Подобного эффекта можно добиться, если использовать смесь двух индикаторов, цвета к-рых дополняют дру. друга. Такие индикаторы наз. смешанными (табл. 2).


Смеси индикаторов, к-рые непрерывно изменяют свой цвет во всей области значений рН от 1 до 14, наз. универсальными. Их используют для приблизит. оценки рН р-ров. На изменение окраски индикатора оказывают влияние его концентрации . Для двухцветных индикаторов чем выше концентрация , тем изменение окраски менее резко, т.к. спектры поглощения обеих форм накладываются друг на друга в большей степени и становится труднее определить изменение окраски. Обычно используют одно и то же минимальное (неск. капель р-ра) кол-во индикатора. Интервал перехода многих индикаторов зависит от т-ры. Так, метиловый оранжевый меняет свою окраску при комнатной т-ре в интервале рН 3,4-4,4, а при 100 °С в интервале рН 2,5-3,3. Это связано с изменением ионного произведения воды . Присутствующие в р-ре коллоидные частицы адсорбируют индикаторы, что приводит к полному изменению его цвета. Для исключения ошибки в присут. положительно заряженных коллоидных частиц следует применять индикаторы-основания, а в присут. отрицательно заряженных - индикаторы-кислоты. При титровании в обычных условиях необходимо учитывать влияние растворенного СО 2 , особенно при использовании индикаторов с рК ln > 4 (напр., метилового оранжевого , метилового красного, фенолфталеина). Иногда СО 2 предварительно удаляют кипячением или титруют р-р в отсутствие контакта с атмосферой . Влияние посторонних нейтральных электролитов (солевой эффект) проявляется в смещении равновесия индикаторов. В случае индикаторов-кислот интервал перехода смещается в более кислую область, а в случае индикаторов-оснований - в более щелочную. В зависимости от природы р-рителя меняются окраски индикаторов, их рК ln и чувствительность. Так, метиловый красный в воде дает переход окраски при более высоких значениях активности ионов Н + , чем бромфеноловый синий, а в этиленгликолевом р-ре наоборот. В водно-метанольных и водно-этанольных р-рах изменение по сравнению с водной средой незначительно. В спиртовой среде индикаторы-кислоты более чувствительны к ионам Н + , чем индикаторы-основания. Хотя при титровании в неврдных средах обычно к. т. т. устанавливают потенциометрически с помощью стеклянного индикаторного электрода , используют также кислотно-основные индикаторы (табл. 3). Чаще всего для титрования слабых оснований применяют метиловый красный в диоксане или кристаллический фиолетовый в безводной СН 3 СООН; при титровании слабых к-т - тимоловый синий в ДМФА. Поведение индикаторов в неводной и водной средах аналогично. Напр., для слабой к-ты HIn в р-рителе SН можно записать равновесие : HIn + SH D In - + SH 2 + . Механизм действия индикаторов такой же, как и в воде , только в неводных средах пользуются соответствующими шкалами кислотности (рН р, рА; см. Кислотно-основное титрование). В качестве кислотно-основных индикаторов используют также люминесцентные индикаторы , меняющие цвет и интенсивность флуоресценции в зависимости от рН и позволяющие титровать сильно окрашенные и мутные р-ры.

Для титрования слабых к-т применяются т наз. индикаторы помутнения в-ва, образующие обратимые коллоидные системы , коагулирующие в очень узком интервале рН (напр., изонитроацетил-n-аминобензол дает муть при рН 10,7-11,0). В качестве кислотно-основных индикаторов можно использовать комплексы металлов с металлохромными индикаторами (см. ниже); эти комплексы, разрушаясь, изменяют окраску р-ра в узком интервале рН. Для определения орг. к-т и оснований в воде в присут. несмешивающегося с ней р-рителя применяют т. наз. амфииндикаторы, к-рые представляют собой соли индикаторов-кислот (напр., тропеолина 00) с разл. орг. основаниями (напр., алкалоидами). Эти индикаторы хорошо раств. в орг. р-рителях, плохо в воде ; отличаются высокой чувствительностью. Адсорбционные индикаторы в-ва, способные адсорбироваться на пов-сти осадка и менять при этом окраску или интенсивность люминесценции Эти индикаторы, как правило, обратимы и используются в осадительном титровании В первую очередь осадком адсорбируются ионы , идентичные тем, к-рые входят в состав самого осадка, после чего адсорбируется индикатор. Большая группа индикаторов красители (табл. 4), адсорбирующиеся пов-стью осадка с образованием солей с ионами , содержащимися в осадке.


Напр., р-р эозина розового цвета, к-рый не меняется при добавлении AgNO 3 . Но при титровании р-ром КВr выпадающий осадок адсорбирует ионы Ag + , к-рые присоединяют к себе анионы эозина . Осадок при этом становится красно-фиолетовым. В к. т. т., когда оттитрованы все ионы Ag + , окраска осадка исчезает и р-р становится снова розовым. Неорг. адсорбц. индикаторы образуют с ионами титранта цветной осадок или комплекс (как, напр., применяемые в качестве индикаторов ионы СrО 4 - и SCN - в аргентометрии). В качестве адсорбц. индикаторов применяются также нек-рые кислотно-основные, окислит.-восстановит. и комплексонометрич. индикаторы, св-ва к-рых (константы кислотной диссоциации , окислит.-восстановит. потенциалы и константы устойчивости комплексов с катионами металлов) в адсорбир. состоянии зависят от природы и концентрации ионов на пов-сти осадка. Окислит.-восстановит. индикаторы - в-ва, способные изменять окраску в зависимости от окислит.-восстановит. потенциала р-ра. Применяют для установления к. т. т. окислит.-восстановит. титрования и для колориметрич. определения окислит.-восстановит. потенциала (преим. в биологии). Такими индикаторами служат, как правило, в-ва, к-рые сами подвергаются окислению или восстановлению , причем окисленная (In Oх) и восстановленная (In Red) формы имеют разные окраски. Для обратимых окислит.-восстановит. индикаторов можно записать: In Oх + ne D In Red , где п - число электронов . При потенциале Е отношение концентраций обеих форм индикатора определяется Нернста уравнением :
,
где E ln - реальный окислит.-восстановит. потенциал индикатора, зависящий от состава р-ра. Интервал перехода окраски практически наблюдается при изменении отношения / от 0,1 до 10, что при 25 °С соответствует
D E (в В) = E ln b (0,059/n). Потенциал, соответствующий самому резкому изменению цвета, равен E ln . При выборе индикатора учитывают гл. обр. значения E ln , коэф. молярного погашения обеих форм индикатора и потенциал р-ра в точке эквивалентности. При титровании сильными окислителями (К 2 Сr 2 О 7 , КМnО 4 и др.) применяют индикаторы, имеющие сравнительно высокие E ln , напр., дифениламин и его производные; при титровании сильными восстановителями [солями Ti(III), V(II) и т.д.] применяют индикаторы с относительно низкими E ln , напр., сафранин , метиленовый голубой (табл. 5).


Нек-рые в-ва изменяют свою окраску необратимо, напр., при окислении разрушаются с образованием бесцв. продуктов, как индиго под действием гипохлоритов или нафтоловый сине-черный под действием ионов ВrО 3 . Комплексонометрические индикаторы - в-ва, образующие с ионами металлов (М) окрашенные комплексы, по цвету отличающиеся от самих индикаторов Применяются для установления к. т. т. в комплексонометрии . Устойчивость комплексов металлов с индикаторами (In) меньше, чем соответствующих комплексoнатов, поэтому в к. т. т. комплексоны вытесняют индикаторы из комплексов с металлами . В момент изменения окраски в точке эквивалентности = и, следовательно, рМ = - lg K Mln , где рМ = - lg[M] наз. точкой перехода индикатора, К Mln - константа устойчивости комплекса металла с индикатором. Ошибка при титровании связана с тем, что нек-рое кол-во