Наследование альтернативных признаков. Закономерности наследования признаков. Основные понятия, используемые при скрещивании

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F 1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F 1 Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F 1 , полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких. В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F 2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Закономерности наследования признаков

1. Открытие Г. Менделем законов независимого наследования.

    ? – Почему Мендель, не будучи биологом, открыл законы наследования, хотя до него это пытались сделать много талантливых учёных?

(История генетики – повторить!)

Научный период генетики начался с 1900 г. , когда были переоткрыты законы Менделя.

Мендель открыл основные закономерности наследования признаков в поколениях в 1866 г. Опубликовал статью «Опыты над растительными гибридами» в Трудах общества естествоиспытателей в г. Брюнне (ныне Брно), которая не привлекла внимания современников. В настоящее время законы Менделя проверены на громадном числе растительных и животных форм. Мендель заложил фундамент представлений о дискретном характере наследственного вещества и о его распределении при образовании половых клеток у гибридов. Глубокое проникновение в проблему и чёткая методология экспериментов обеспечили Менделю успех там, где его предшественники терпели неудачу. Он в каждом эксперименте концентрировал внимание на одном признаке, а не на растении в целом, отбирал те признаки, по которым растения чётко отличались. Прежде чем скрещивать растения между собой, он убеждался, что они принадлежат чистым линиям .

Г. Мендель ввёл символы: А – для доминантного, а – для рецессивного признака в гомозиготном и гетерозиготном состоянии.

Доминантный признак – преобладающий признак, проявляется в гомозиготном и гетерозиготном состоянии определяющего его гена и подавляющий развитие другого признака.

Рецессивный признак – признак, передаваемый по наследству, но не проявляющийся в гетерозиготном состоянии определяющего его гена.

(Законы Менделя и их цитологические основы повторить).

Законы наследования носят универсальный характер и не зависят от систематического положения организма и сложности его строения. Используя формулу расщепления, можно рассчитать численность и сорт образующихся гамет и возможных вариантов их сочетаний при оплодотворении у гибридов.

2. Доминантные и рецессивные признаки у человека.

Наследственность человека подчиняется тем же биологическим закономерностям, что и наследственность всех живых существ. У человека, как и у других организмов, размножающихся половым путём, встречаются доминирующие и рецессивные признаки.

В силу целого ряда причин наследственность человека трудно поддаётся изучению:

    Невозможность постановки экспериментов по скрещиванию, подбор родительских пар и др.;

    Медленная смена поколений и небольшое число детей в каждой семье;

    Большое число хромосом и генов;

    Биологическая и социальная ценность каждого индивидуума.

Гибридологический анализ неприменим к человеку.

Наследование некоторых признаков было описано ещё в 18 веке. Современная антропогенетика пока имеет сведения не обо всех, а о редко встречающихся признаках, многие из которых наследуются по законам Менделя.

3. Основные понятия, используемые при скрещивании.

Гомозигота – диплоидная клетка (особь), имеющая в гомологичных хромосомах одинаковые аллели данного гена (доминантная – АА, рецессивная – аа) и не дающая расщепления.

Гетерозигота – диплоидная клетка (особь),имеющая в гомологичных хромосомах разные аллели данного гена (Аа) и дающая расщепление.

Термины принадлежат английскому генетику Уильяму Бэтсону, который в начале 20-го века сформулировал гипотезу Менделя как «закон чистоты гамет». Гены в гетерозиготе не смешиваются, оставаясь в «чистоте», и могут проявляться в последующих поколениях.

Самцы и самки большинства организмов различаются хромосомным набором соматических и половых клеток. Одинаковые (идентичные) хромосомы в кариотипе клеток мужчин и женщин – аутосомы и разные (неидентичные) хромосомы – гетеросомы (аллосомы), или половые хромосомы. При определении пола у человека клетки женщин содержат гомологичные, одинаковые половые хромосомы и могут быть гомозиготны или гетерозиготны по генам, расположенным в половых хромосомах ХХ, а мужчины гемизиготны (от греч. геми – полу), у них разные половые хромосомы, т. е. они имеют одну Х-хромосому, а другую Y-хромосому. Таким образом, в состав нормальных кариотипов мужчин и женщин входит 44 аутосомы и 2 аллосомы: пары Х-хромосом у женщин и ХY-хромосом у мужчин. Цитогенетики показали, что при сперматогенезе аллосомы Х и Y либо совсем не конъюгируют, либо соединяются лишь одним концом. Поэтому наследование признаков, гены которых расположены в половых хромосомах, происходит по-разному у женщин и мужчин.

Наследственными факторами, передаваемыми родителями потомству, являются гены. Пара генов, отвечающих за проявление альтернативных (взаимоисключающих) признаков, называется аллельные гены (аллель).

Аллельные гены (аллель) – пара генов (Аа), расположенных в одних и тех же локусах гомологичных хромосом и контролирующих развитие альтернативных признаков.

Неаллельные гены лежат в разных локусах гомологичных хромосом или в разных хромосомах и отвечают за проявление разных признаков.

Аллель от греч. allelon – другой, иной – одна из двух и более альтернативных форм гена, имеющая определённую локализацию на хромосоме и уникальную последовательность нуклеотидов.

    Механизм передачи потомству качественных характеристик.

Передачу потомству качественных характеристик лучше рассматривать сначала на наиболее простых случаях. Таковым является наследование, зависящее от одного гена - моногенное наследование и передающееся по законам Менделя. Например, система резус-фактора крови.

«Резусположительные» свойства крови детерминированы доминантным геном Rh+, а «резусотрицательные» обусловлены рецессивным геном rh-; кровь «резусположительных» и «резусотрицательных» людей несовместима.

При браке мужчины, обладающего геном Rh+, и женщины с генами rh-rh- может образоваться при гетерозиготности отца (или непременно образуется при гомозиготности) «резусположительный» плод. Развитие такого эмбриона в теле «резусотрицательной» матери приводит к резус-конфликту. Этот конфликт не слишком тяжёлый при первой беременности, становится трагическим при второй и последующих, так как концентрация антител против чужеродных для матери «резусположительных» свойств крови плода возрастает. Это приводит к спонтанному аборту, мёртворождению, гибели новорождённого от гемолитической болезни в первые дни жизни или умственной отсталости выжившего ребёнка. Спасти ребёнка можно лишь полной заменой крови. Знание генетики даёт возможность заранее планировать и осуществлять полное обменное переливание крови ребёнку.

    Типы наследования менделирующих признаков у человека.

1) Аутосомно-доминантный тип наследоапния. Это наследование доминантных признаков, сцепленных (локализованных) с аутосомами. Характеризуется значительной фенотипической изменчивостью от едва заметного до чрезмерно интенсивного проявления признака. Один из родителей в браке гетерозиготен или гомозиготен по патологическому гену – АА или Аа, другой гомозиготен по нормальному аллелю – аа. Варианты генотипов потомства Аа,Аа,аа,аа. Каждый будущий ребёнок, независимо от пола в 50% случаев имеет вероятность получить от больного родителя аллель А и быть поражённым.

Критерии родословных аутосомно-доминантного типа наследования:

    заболевание проявляется в каждом поколении – «вертикальный тип»;

    каждый ребёнок родителя, больного А-Д заболеванием, имеет 50%-ный риск унаследовать его;

    непоражённые дети больных родителей свободны от мутантного гена и имеют здоровых детей;

    заболевания наследуются лицами мужского и женского пола одинаково часто и со сходной клинической картиной.

2). Аутосомно-рецессивный тип наследования. Это наследование рецессивных признаков, сцепленных с аутосомами. Заболевания с этим типом наследования проявляются только у гомозигот - аа, которые получили по одному рецессивному гену от каждого из родителей-гетерозигот Аа. Болезнь протекает более тяжело, чем при А-Д типе наследования, так как «пораженными» будут оба аллеля данного гена. Вероятность встречи двух носителей А-Р гена значительно возрастает в случае кровного родства супругов.

Критерии родословных аутосомно-рецессивного типа наследования:

    больные дети рождаются у здоровых фенотипически родителей, которые являются гетерозиготными носителями патологического гена;

    заболевание не зависит от пола ребёнка;

    повторный риск рождения ребёнка с А-Р заболеванием составляет 25%;

    «горизонтальное» распределение больных в родословной, т. е. пациенты встречаются в пределах потомства одной родительской пары;

    в браке двух поражённых родителей все дети будут больны.

    в браке поражённого индивида и гетерозиготного носителя того же мутантного аллеля риск для будущих детей составит 50% (псевдодоминирование).

По А-Р типу наследуется абсолютное большинство наследственных заболеваний обмена веществ (ферментопатий).

3). Наследование, сцепленное с Х-хромосомой.

Гены, локализованные в половых хромосомах, по-разному распределяются у мужчин и женщин. У женщин имеются две Х-хромосомы и она, унаследовав патологический аллель, будет гетерозиготной, а мужчина – гемизиготным. Этим определяются основные различия в частоте и тяжести поражения различных полов при Х-сцепленном наследовании, как доминантном, так и рецессивном.

Доминантный Х-сцепленный тип наследования - это наследование доминантных признаков, детерминированных генами, сцепленными с Х-хромосомой. Заболевания встречаются в 2 раза чаще у женщин, чем у мужчин. Больные мужчины передают аномальный ген Х А всем своим дочерям и не передают сыновьям. Больная женщина передаёт Х-сцепленный доминантный ген Х А половине своих детей независимо от пола.

Критерии родословных Х-сцепленного доминантного типа наследования:

    болезнь встречается у женщин в родословных примерно в 2 раза чаще;

    больной мужчина передаёт мутантный аллель всем своим дочерям и не передаёт сыновьям, поскольку последние получают от отца Y-хромосому;

    больные женщины передают мутантный аллель 50% своих детей независимо от пола

    женщины в случае болезни страдают менее тяжело – они гетерозиготны, чем мужчины – они гемизиготны.

При крайней степени выраженности индивиды женского пола - больные живут, мужского пола гибнут ещё внутриутробно.

Рецессивный Х-сцепленный тип наследования - это наследование рецессивных признаков, детерминированных генами, сцепленными с Х-хромосомой. Заболевание или признак всегда проявляется у мужчин, имеющих соответствующий ген Х а, а у женщин – только в случаях гомозиготного состояния при генотипе Х а Х а (что наблюдается крайне редко).

Критерии родословных Х-сцепленного рецессивного типа наследования:

    заболевание встречается в основном у лиц мужского пола;

    признак передаётся от больного отца через его фенотипически здоровых дочерей половине его внуков;

    заболевание никогда не передаётся от отца к сыну;

    в браке женщины-носительницы с больным мужчиной 50% дочерей будут больны, 50% дочерей будут носителями, 50% сыновей также будут больны, а 50% сыновей – здоровые.

Y -сцепленное, или голандрическое, наследование.

В этой хромосоме локализованы около 20 генов, определяющих развитие семенников, отвечающие за сперматогенез, контролирующие интенсивность роста, определяющие оволосение ушной раковины, средних фаланг кистей и др. Признак передаётся от отца только мальчикам. Патологические мутации, обусловливающие нарушение формирования семенников или сперматогенеза, не наследуются в связи со стерильностью их носителей.

4). Митохондриальная или цитоплазматическая наследственность.

Кольцевая молекула ДНК митохондрий содержит 16 569 тыс. пар оснований. Митохондрии наследуются ребёнком от матери с цитоплазмой ооцитов, поэтому заболевание передаётся от матери всем детям независимо от пола ребёнка; больные отцы не передают заболевание детям, все дети будут здоровыми и передача заболевания прекращается. Мутации митохондриальной ДНК обнаруживаются при около 30 различных заболеваний: атрофия зрительного нерва (синдром Лебера), митохондриальная миоэнцефалопатия и др.

    Генотип. Фенотип.

Доминирование приводит к тому, что по наблюдаемому признаку не всегда можно судить о генетической структуре организма, т. е. о его генах и генотипе.

Ген – независимо комбинирующаяся дискретная материальная единица наследственности (участок ДНК), ответственная за развитие одного признака (одного белка).

Генотип – двойной набор генов, наследственная конституция особи, программа, определяющая развитие особи. Формулы АА, Аа, аа выражают генотип организма, причём генотипы АА и Аа имеют одинаковые фены и фенотип.

Фен (признак) – какое либо качество организма, по которому можно отличить один организм от другого.

Фенотип – совокупность признаков и свойств организма, формирующихся в результате взаимодействия генотипа с окружающей средой.

Расщепление по генотипу и фенотипу как правило не совпадает.

Форма взаимодействия аллельных генов доминантность и рецессивность часто упрощена. Есть факты, указывающие на существование других форм межгенных взаимоотношений в системе генотипа.

    Взаимодействие аллельных генов : полное доминирование, неполное доминирование, кодоминирование (например, при наследовании IV группы крови АВ).

    Взаимодействие неаллельных генов : комплементарность, эпистаз, полимерия, плейотропия).

При полном доминировании рецессивный аллель полностью подавляется доминантным, при неполном доминировании фенотип имеет среднюю степень выраженности признака между рецессивным и доминантным – промежуточный характер наследования признака. Кодоминирование рассматривается при множественном аллелизме.

7. Множественные аллели. Наследование групп крови.

Множественный аллелизм – это явление, когда один признак (проявляющийся в нескольких формах) контролируется не одной парой аллельных генов, а несколькими аллелями генов, т. е. существует несколько аллеломорфных состояний одного гена, среди которых могут быть несколько доминантных или рецессивных аллелей.

Пример: наследование групп крови у человека контролируется геном Ii (изогемагглютиноген), представленным тремя аллелями – А, В, О. Аллели А и В – доминантные, О – рецессивный.

Группы крови системы АВО открыты в начале ХХ века австрийским учёным К. Ландштейнером при изучении поведения эритроцитов в сыворотке крови разных людей. Он обратил внимание, что при переливании крови эритроциты у одних людей распределяются равномерно, а у других склеиваются. Используя разные комбинации, он обнаружил три группы крови, I, II, III, а IV была установлена позже.

(таблица наследования групп крови, решение задач)

    Количественная и качественная специфика проявления генов в признаках.

Проявление взаимодействия неаллельных генов выражается в количественных и качественных признаках.

Качественные признаки это окраска шерсти, цветков, группы крови, жирность молока, они контролируются генотипом и не зависят от внешней среды. Они характеризуются эпистатическим и комплементарным взаимодействием неаллельных генов.

Эпистаз – подавление генов одной пары, генами другой, неаллельной им пары. Эпистатический ген – подавляющий, может быть как доминантным так и рецессивным. Гипостатический ген – подавляемый. Пример эпистаза наследование цвета шерсти у домашних кроликов (бел. + бел = сер; сер. + сер. = сер., бел., чер.)

Комплементарность – признак, контролируемый неаллельными генами, проявляется от взаимодействия продуктов этих генов, которые взаимно дополняют друг друга. Пример – наследование окраски околоцветника у душистого горошка, А – ген, определяющий развитие пропигмента,который превращается в пигмент под воздействием особого фермента, В – ген, отвечающий за синтез этого фермента. У особей с генотипом ааВВ – есть фермент, нет пропигмента. У особей с генотипом ААвв – есть пропигмент, нет фермента. У обеих форм цветки белые. Если их скрестить между собой, то у потомства цветки будут красного цвета, т. к. генотип особей будет дигетерозиготным АаВв, у них в клетках будет и пропигмент, и фермент, превращающий этот пропигмент в пигмент.

Количественные признаки это рост, масса, удойность, яйценоскость и количество молока, зависят в своём проявлении от внешней среды и наследуются как модификации признака, его норма реакции , тип реакции генотипа на внешнюю среду. Т. е. наследуются как размах фенотипической изменчивости. Они характеризуются полимерным и плейотропным действием генов.

Плейотропия – независимое или автономное действие гена в разных органах и тканях, влияние одного гена на формирование нескольких признаков (например, при серповидно-клеточной анемии, синдроме Марфана пораженными оказываются многие органы и ткани).

Полимерия – явление, когда много генов определяют развитие одного признака, т. е. признаки определяются сочетанием аллелей нескольких генов. Проявление признака зависит от числа неаллельных доминантных генов, которые действуют в одном направлении. Действие генов суммируется, а фенотип проявления признака тем сильнее, чем больше генов. Например, цвет кожи у человека зависит от действия трёх пар генов, генотип людей негроидной расы ААВВСС, европеоидной – ааввсс, средних мулатов АаВвСс, мулаты бывают светлые и тёмные.

Проявления генов характеризуют такие понятия как пенентрантность и экспрессивность.

Пенетрантность – это проявляемость гена, частота проявления гена у носителей этого гена. Степень пенетрантности зависит от условий внешней среды. При 100%-ой пенетрантности у всех носителей гена отмечается его клинические (фенотипические) проявления. Если действие гена проявляется не у всех его носителей, говорят о неполной пенетрантности. При неполной пенетрантности в родословной с А-Д типом наследования может быть пропуск поколения, т. е. ситуация, когда фенотипически поколения «проскальзывают», в родословной есть индивиды, имеющие поражённого предка, имеющие поражённых потомков, а у самих при этом признак фенотипически не проявляется.

Экспрессивность – степень фенотипического выражения признака. При отсутствии изменчивости признака, контролируемого данным аллелем, говорят о постоянной экспрессивности, в противном случае – об изменчивой или вариабельной. Группа крови – признак с постоянной экспрессивностю, цвет глаз – признак с вариабельной экспрессивностью.

9. Хромосомная теория наследственности Т. Моргана.

Основные положения сформулированы на основании открытий Томаса Моргана и его сотрудников:

1). Гены находятся в хромосомах. Каждая пара хромосом представляет собой группу сцепления генов. Число групп сцепления у каждого вида организмов равно числу пар гомологичных хромосом (у дрозофилы – 4 гр. сцепления, у человека – 23).

2). Каждый ген в хромосоме занимает отдельное место – локус , Гены в хромосомах расположены линейно.

3). Между гомологичными хромосомами может происходить перекрёст (кроссинговер) , приводящий к обмену аллельными генами и проявлению новых рекомбинантных сочетаний признаков.

4) Частота кроссинговера прямо пропорциональна расстоянию между генами в хромосомах. Чем дальше друг от друга находятся гены, тем чаще между ними происходит кроссинговер.

5). Изучая частоту кроссинговера между аллельными генами, можно выяснить порядок расположения генов в хромосоме и расстояние между ними, т. е. составить генетическую карту хромосом.

    Карты хромосом человека.

Генетическая карта хромосомы – схема относительного расположения генов, входящих в состав одной хромосомы и принадлежащих к одной группе сцепления.

Закон сцепленного наследования (з – н Моргана)

Гены, расположенные в одной хромосоме, наследуются преимущественно вместе (сцепленно), образуя группу сцепления.

Выражается в условных единицах – морганидах (расстояние между локусами генов с частотой кроссинговера в 1%).

На генетической карте показано относительное расположение генов и других генетических маркеров на хромосоме, а также относительное расстояние между ними. Генетическим маркером для составления карты потенциально может быть любой наследуемый признак – цвет глаз, длина фрагментов ДНК. Главное при этом – наличие легко выявляемых межиндивидуальных различий рассматриваемых маркеров.

11. Понятие о полигенном наследовании.

Некоторые признаки зависят от многих генов в своём проявлении или определяются сочетанием аллелей нескольких генов – полимерия Полимерные гены с однозначным действием могут определять как колличественные так и качественные признаки. Они обусловлены действием многих генов, каждый из которых оказывает небольшое влияние на степень экспрессии данного признака. Такие признаки называются полигенные, а гены полимерными.

Любой из генов, входящих в «комплекс предрасположенности», оказывает малое, но суммирующее влияние на формирование предрасположенности к заболеванию. Проявится ли оно, и как тяжело будет протекать, зависит от числа генов и средовых факторов.

Таким образом, наследуются не отдельные гены, а «генотипическая среда», действие каждого гена зависит от других генов, от их взаимодействия.

наследования признаков : Закон доминирования или закон...
  • Закономерности наследования признаков , установленные Менделем

    Доклад >> Биология

    Закономерности наследования признаков , установленные Менделем Часть открытий из области основных закономерностей наследования признаков ... наследственности. Установленные Менделем закономерности наследования признаков получили цитологические обоснования...

  • Генетика. Конспект лекций

    Конспект >> Биология

    Ун-та, 2002. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ Лекция 6 Наследование при моногибридных и полигибридных... . – М.: Колос, 2004. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ Лекция 8-9 Генетика пола и наследование признаков , сцепленных с полом. Сцепление генов...

  • Понятия, ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации

    Контрольная работа >> Биология

    Всем организмам, размножающимся половым путем. Закономерности наследования признаков в этот период изучались на уровне... изменчивости организмов. Морган установил также закономерности наследования признаков , сцепленных с полом. Третий этап в развитии...

  • Генетика как наука. Основные понятия генетики

    Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

    Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

    Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

    Наследование — это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

    Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

    Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

    — скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

    — был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

    — было прослежено не только первое поколение, но и последующие по этому признаку.

    Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум — дигибридным, по трем и более — полигибридным.

    Основные понятия генетики

    В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

    Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

    Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

    Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака — прописной, а рецессивного — строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

    АА – особь, гомозиготная по доминантному признаку

    аа – особь, гомозиготная по рецессивному признаку

    Аа – особь гетерозиготная

    Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

    Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

    Моногибридное скрещивание

    Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономерность получила название правило единообразия (доминирования) гибридов первого поколения (или первый закон Г. Менделя).

    Опыты по скрещиванию записывают в виде схем:

    А – ген желтой окраски

    а – ген зеленой окраски

    Р — (parents – родители)

    F — (filii – дети)

    Р ♀АА х ♂аа

    F1 Аа – 100% желтые

    Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

    Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

    Правило расщепления. Второй закон Менделя

    Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

    Р ♀ Аа х ♂ Аа

    G (А) (а) (А) (а)

    F2 АА; Аа, Аа; аа

    желтые зеленые

    Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа

    Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

    Ди- и полигибридное скрещивание. Третий закон Менделя

    При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

    А – ген желтого цвета

    а – ген зеленого цвета

    В – ген гладкой формы

    в – ген морщинистой формы

    Р ♀ААВВ х ♂аавв

    ж. гл. з. морщ.

    F1 АаВв – желтые гладкие

    При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

    Р ♀ АаВв х ♂АаВв

    9 частей – желтых гладких

    3 части – желтых морщинистых

    3 части – зеленых гладких

    1 часть – зеленых морщинистых

    Из этого скрещивания видно, что во втором поколении имелись не только особи с сочетанием признаков родителей, но и особи с новыми комбинациями признаков.

    Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

    Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

    Кроме законов, Мендель сформулировал две гипотезы: факторальную и гипотезу «чистоты гамет», с помощью которых он попытался объяснить установленные закономерности.

    Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.

    Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

    Анализирующее скрещивание

    Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

    Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

    Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

    Р ♀ АА х ♂ аа

    Р ♀ Аа х ♂ аа

    G (А) (а) (а)

    Как видно из схемы, при анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

    Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

    При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F1Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

    Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

    Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

    Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

    Закон расщепления в моногибридном скрещивании

    Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

    Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

    Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

    Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

    Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

    Закон независимого наследования в дигибридном скрещивании

    Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

    При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

    Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

    (3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

    В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

    Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

    Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

    Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

    Взаимодействие генов

    Некоторые признаки определяются не одним геном, а одновременным действием нескольких.

    В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

    Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

    Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

    Условия выполнения законов наследования

    Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

    Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

    Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

    Представления о том, что для живых существ характерны наследственность и изменчивость, сложились еще в древности. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия (проявление изменчивости).

    Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Исстари в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX в. такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

    В 1866 г. вышел в свет труд Грегора Менделя, чешского исследователя, «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений нескольких видов, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки - генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки.

    Основные понятия современной генетики.

    Наследственностью называется свойство организмов повторять в ряду поколений комплекс признаков (особенности внешнего строения, физиологии, химического состава, характера обмена веществ, индивидуального развития и т. д.).

    Изменчивость - явление, противоположное наследственности. Она заключается в изменении комбинаций признаков или появлении совершенно новых признаков у особей данного вида.

    Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

    Сочетание двух указанных свойств тесно связано с процессом эволюции. Новые признаки организмов появляются в результате изменчивости, а благодаря наследственности они сохраняются в последующих поколениях. Накапливание множества новых признаков приводит к возникновению других видов

    Виды изменчивости

    Различают наследственную и ненаследственную изменчивость.

    Наследственная (генотипическая) изменчивость связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость - это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

    Норма реакции

    Это границы фенотипической изменчивости признака, возникающей под действием факторов внешней среды. Норма реакции определяется генами организма, поэтому норма реакции по одному и тому же признаку у разных индивидов различна. Размах нормы реакции различных признаков также варьирует. Те организмы, у которых норма реакции шире по данному признаку, обладают более высокими адаптивными возможностями в определенных условиях среды, т. е. модификационная изменчивость в большинстве случаев носит адаптивный характер, и большинство изменений, возникших в организме при воздействии определенных факторов внешней среды, являются полезными. Однако фенотипические изменения иногда утрачивают приспособительный характер. Если фенотипическая изменчивость клинически сходна с наследственным заболеванием, то такие изменения называются фенокопией.

    Комбинативная изменчивость

    Связана с новым сочетанием неизменных генов родителей в генотипах потомства. Факторы комбинативной изменчивости.

    1.Независимое и случайное расхождение гомологичных хромосом в анафазе I мейоза.

    2.Кроссинговер.

    3.Случайное сочетание гамет при оплодотворении.

    4.Случайный подбор родительских организмов.

    Мутации

    Это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, части хромосом или отдельные гены. Они возникают под действием мутагенных факторов физического, химического или биологического происхождения.

    Мутации бывают:

    1) спонтанные и индуцированные;

    2) вредные, полезные и нейтральные;

    3) соматические и генеративные;

    4) генные, хромосомные и геномные.

    Спонтанные мутации - это мутации, возникшие ненаправленно, под действием неизвестного мутагена.

    Индуцированные мутации - это мутации, вызванные искусственно действием известного мутагена.

    Хромосомные мутации - это изменения структуры хромосом в процессе клеточного деления. Различают следующие виды хромосомных мутаций.

    1.Дупликация - удвоение участка хромосомы за счет неравного кроссинговера.

    2.Делеция - потеря участка хромосомы.

    3.Инверсия - поворот участка хромосомы на 180°.

    4.Транслокация - перемещение участка хромосомы на другую хромосому.

    Геномные мутации - это изменение числа хромосом. Виды геномных мутаций.

    1.Полиплоидия - изменение числа гаплоидных наборов хромосом в кариотипе. Под кариотипом понимают число, форму и количество хромосом, характерные для данного вида. Различают нуллисомию (отсутствие двух гомологичных хромосом), моносомию (отсутствие одной из гомологичных хромосом) и полисомию (наличие двух и более лишних хромосом).

    2.Гетероплоидия - изменение числа отдельных хромосом в кариотипе.

    Генные мутации встречаются наиболее часто.

    Причины генных мутаций:

    1) выпадение нуклеотида;

    2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);

    3) замена одного нуклеотида на другой.

    Передача наследственных признаков в ряду поколений особей осуществляется в процессе размножения. При половом - через половые клетки, при бесполом наследственные признаки передаются с соматическими клетками.

    Единицами наследственности (ее материальными носителями) являются гены. В функциональном отношении конкретный ген отвечает за развитие какого-то признака. Это не противоречит тому определению, которое мы давали гену выше. С химической точки зрения ген - участок молекулы ДНК. Он содержит генетическую информацию о структуре синтезируемого белка (т. е. последовательности аминокислот в белковой молекуле).

    Совокупность всех генов в организме определяет совокупность конкретных белков, синтезируемых в нем, что в конечном счете приводит к формированию специфических признаков.

    У прокариотной клетки гены входят в состав единственной молекулы ДНК, а у эукариотной - в молекулы ДНК, заключенные в хромосомах. При этом в паре гомологичных хромосом в одних и тех же участках располагаются гены, отвечающие за развитие какого-то признака (например, окраска цветка, форма семян, цвет глаз у человека). Они получили название аллельных генов. В одну пару аллельных генов могут входить либо одинаковые (по составу нуклеотидов и определяемому ими признаку), либо отличающиеся гены.

    Понятие «признак» связано с каким-то отдельным качеством организма (морфологическим, физиологическим, биохимическим), по которому мы можем отличить его от другого организма. Например: глаза голубые или карие, цветки окрашенные или неокрашенные, рост высокий или низкий, группа крови I(0) или II(A) и т. д.

    Совокупность всех генов у организма называется генотипом, а совокупность всех признаков - фенотипом.

    Фенотип формируется на базе генотипа в определенных условиях внешней среды в ходе индивидуального развития организмов.

    Основные закономерности наследственности и изменчивости

    Генетика наука, изучающая закономерности и механизмы наследственности и изменчивости

    Наследственность общее свойство всех организмов сохранять и передавать из поколение в поколение признаки своего строения и жизнедеятельности

    • совокупность механизмов, обеспечивающих структурно-функциональную преемственность организмов в ряду поколений (т. е. наследование)

    Наследование — процесс воспроизведения в поколениях общего плана структурно-функциональной организации и отдельных признаков у особей одного биологического вида

    Изменчивость – общее свойство живых организмов приобретать отличия в строениеии и жизнедеятельности потомков от предков

    v ведёт к возникновению индивидуальных различий между особями одного вида

    Этапы развития генетики

    • Открытие законов наследственности. В 1856 г. Г. Мендель (чех.) выявил важнейшие законы наследственности (в работе « Опыты над растительными гибридами ») и показал, что:

    * признаки определяются дискретными (отдельными) наследственными факторами, которые передаются через половые клетки

    * отдельные признаки организма при скрещивании не исчезают, а сохраняются в потомстве в том же виде как и у родителей (дискретная концепция наследственности)

    * каждому признаку в организме соответствуют два наследственных фактора, получаемых от женской и мужской особи

    • Официальное рождение генетики . В 1900 г. Г. де Фриз (гол.) , К. Корренс (гер.) и К. Чермак (австр.) на разных объектах независимо переоткрыли законы Менделя и признали его приоритет
    • Развитие хромосомной теории.

    В!911 г. Т. Морган (США) сформулировал хромосомную теорию наследственности и экспериментально доказал, что основными носителями генов являются хромосомы, что гены в хромосомах располагаются линейно

    • Открытие нуклеиновых кислот как наследственного материала. В 1928 г. Ф. Гриффит и О. Эвери показали, что свойства от одной клетки к другой могут передаваться только с ДНК
    • Расшифровка строения молекулы ДНК. В 1953 г. Ф. Крик (англ.) и Дж. Уотсон (амер.) предложили модель двойной спирали структуры ДНК, которая многократно проверялась и была признана правильной

    n Современная генетика включает несколько дисциплин: цитогенетика, онтогентика, селекция биохимическая генетика, иммуногенетика, медицинская цитогенетика, генетика человека

    n Генетика тесно связана с биохимией, молекулярной биологией, цитологией, эмбриологией, теорией эволюции и т. д.

    Методы генетики

    1. Гибридологический метод (открыт Менделем) — выведение закономерностей наследования на основе количественного учёта (математической обработки) гибридного потомства, полученного при скрещивании родителей, отличающихся одним или несколькими признаками

    • Мендель выделял и учитывал не весь комплекс родительских признаков и их потомков, а анализировал наследование по отдельным альтернативным признакам (одному или нескольким: моно- , ди — , тригибридное, полигибридное и т. д. скрещивание)
    • Производился точный количественный учёт (математическая, статистическая обработка) наследования каждого альтернативного признака в ряду поколений
    • Исследовался аналогично характер потомства каждого гибрида в отдельности
    • Неприменим для изучения генетики человека, поскольку у него возможно только полигибридное скрещивание и чрезвычайно немногочисленное потомство

    2. Генеалогический метод — составление и анализ родословных

    3. Близнецовый метод — наследование признаков у близнецовс целью оценки соотносительной роли наследственности и среды в развитии признака

    4. Цитогенетический метод — изучение хромосом с помощью микроскопа

    5. Популяционно-статистический — изучение распространения отдельных генов или хромосомных аномалий в популяциях

    6. Мутационный метод — обнаружение мутаций и их наследование в зависимости от способа размножения организма

    7. Рекомбинационный метод — выявление рекомбинаций по отдельным парам генов в одной хромосоме и составление на этой основе генетических карт хромосом с указанием относительного расположения отдельных генов

    8. Биохимический метод установление последовательности аминокислот в полипептидной цепи и определении мутаций на этой основе

    Метод математического моделирования изучение процессов сцепления и взаимодействия генов

    10. Метод гибридизации соматических клеток — культивирование соматических клеток и тканей на питательных стерильных средах

    11. Дополнительные методы иммунологические, физиологические, психологические, метод условных рефлексов и т. д.

    Предыдущая47484950515253545556575859606162Следующая

    К изучению предлагается тема «Закономерности наследственности и изменчивости». На этом уроке мы обобщим знания об основных генетических понятиях: наследственности и изменчивости. Сформулируем определение основных генетических понятий: ген, локус, аллель, гомозигота и гетерозигота. Повторим три закона наследственности Менделя. А также поговорим об основных видах изменчивости: наследственной, модификационной и мутационной, обсудим их роль в эволюции.

    Наследственность - это способность живых организмов передавать неизменными свои признаки в поколениях.

    Изменчивость - способность живых организмов приобретать признаки, отличающие их от родителей.

    В середине XIX века ученые предположили в клетке наличие материального носителя наследственной информации о признаках (рис. 1), этот носитель получил название ген .

    Рис. 1. Цепочка ДНК и хромосомы

    Современная формулировка: ген - участок ДНК, кодирующий матричную РНК, содержащую информацию о первичной последовательности одного полипептида, или кодирующий функциональную РНК - рибосомальную, транспортную и другие.

    Каждый ген имеет свою позицию в хромосоме, так называемый локус (рис. 2).

    Рис. 2. Локус

    Диплоидный организм (человек) содержит удвоенный набор хромосом, одна из которых поступает из материнского организма, а другая из отцовского, таким образом, в клетке имеется по две копии каждого гена (рис. 3).

    Рис. 3. Удвоенный набор хромосом

    Соответственно, в организме может быть одновременно два варианта генов, расположенных в одинаковых локусах гомологичных хромосом, такие варианты генов называются аллелями .

    Потомки получают признаки от своих родителей в соответствии с основными законами наследования.

    1-й закон Менделя . Закон единообразия гибридов первого поколения

    При скрещивании двух гомозиготных организмов, которые отличаются одной парой признаков, все первое поколение будет единообразным по фенотипу и генотипу.

    2-й закон Менделя . Закон расщепления

    При скрещивании двух гетерозиготных организмов у потомков наблюдается расщепление по фенотипу в соотношении 3: 1 и по генотипу в соотношении 1: 2: 1.

    F1 1AA: 2Аа: 1Аа

    3-й закон Менделя . Закон независимого наследования признаков при дигибридном скрещивании:

    При скрещивании гомозиготных особей, которые отличаются двумя и большим количеством пар независимых признаков, фиксируют комбинирование признаков.

    F1 9AB: 3Abb: 3aaB: 1aabb

    Нередко независимые признаки могут наследоваться вместе, это происходит, если соответствующие гены находятся в одной хромосоме, такое наследование называется сцепленным .

    Изменчивость (рис. 4) требуется для лучшей приспособляемости к изменчивым факторам среды. Выделяют наследственную и модификационную изменчивость. Модификационная изменчивость не наследуется. Наследственная изменчивость может быть обусловлена половым процессом, тогда она будет называться комбинативной .

    Основное предназначение разделения полов - это и есть обеспечение комбинативной изменчивости.

    Рис. 4. Виды изменчивости

    Второй тип наследственной изменчивости - мутационная . Мутация - это нарушение нуклеотидной последовательности молекулы ДНК - носителя генетической информации. Мутации возникают случайно и ненаправленно, чаще всего они не приносят пользы организму, а оказываются губительными. Иногда мутации приводят к остро необходимым изменениям, такие особи получают конкурентное преимущество, и заменившийся признак закрепляется в потомстве.

    Комбинативная и мутационная изменчивость создают основу для естественного отбора. Модификационная изменчивость не закрепляется в потомстве, она представляет собой колебания значения признака в некоторых рамках (рис. 5), чаще всего модификациям подвержены количественные признаки - рост, вес, плодовитость.

    Рис. 5. Колебание значения признака

    Листовые пластины могут в зависимости от условий среды достигать разных размеров, но эти размеры будут ограничены так называемой нормой реакции . Норма реакции обусловлена генетически и наследуется.

    Аналогично цвет кожи европейца в зависимости от загара может меняться от молочно-белого до смуглого.

    Величина модификационной изменчивости важна только для удобства конкретной особи, потомству она не передается, поэтому роль модификационной изменчивости в эволюционном процессе невелика.

    Список литературы

    1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология 11 класс. Общая биология. Профильный уровень. - 5-е издание, стереотипное. - Дрофа, 2010.
    2. Беляев Д.К. Общая биология. Базовый уровень. - 11 издание, стереотипное. - М.: Просвещение, 2012.
    3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Общая биология, 10-11 класс.- М.: Дрофа, 2005.
    4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010.

    Домашнее задание

    1. Назовите основные генетические понятия.
    2. По каким законам Менделя мы получаем признаки от своих родителей?
    3. Что такое изменчивость и из каких видов она состоит?

    Закономерности наследования были сформулированы в 1865г Грегори Менделем в работе "Опыты над растительными гибридами". В своих экспериментах он проводил скрещивание различных сортов гороха (Чехия / Австро-Венгрия). В 1900г закономерности наследования переоткрыты Корренсем, Чермаком и Гого де Фризом.

    Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:

    Анализ начинается со скрещивания чистых линий: гомозиготных особей.

    Анализируются отдельные альтернативные взаимоисключающие признаки.

    Точный количественный учет потомков с различной комбинацией признаков

    Наследование анализированных признаков прослеживается в ряду поколений.

    Правило выписывания гамет по формуле 2n , где n - количество гетерозигот: для моногибридов - 2 сорта гамет, для дигибридов - 4, для тригибридов - 8.

    1 ый закон Менделя: "Закон единообразия гибридов 1ого поколения"

    При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.

    В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).

    2 ой закон Менделя: "Закон расщепления"

    При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1

    В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.

    Цитологические основы 2 ого закона Менделя

    Цитологические основы 2 ого закона Менделя раскрываются в гипотезе "чистоты гамет" . Из схем скрещивания видно, что каждый признак определяется сочетанием двух аллельных генов. При образовании гетерозиготных гибридов, аллельные гены не смешиваются, а остаются в неизменном виде. В результате мейоза в гаметогенезе, в каждую гамету попадает только 1 из пары гомологичных хромосом. Следовательно, только один из пары аллельных генов, т.е. гамета чиста относительно другого аллельного гена.

    3 ий закон Менделя: "Закон независимого комбинирования признаков"

    При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

    Для изучения закономерности наследования растений , отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание . Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание , где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами.

    Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.

    При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки - таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями.

    Анализирующее скрещивание

    Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой .

    Гомозиготная особь даст единобразное поколение,

    а геторозиготная - расщепление по фенотипу и генотипу 1:1.

    Хромосомная теория Мограна. Сцепленное наследование

    Устанавливая закономерности наследования, Мендель скрещивал растения гороха. Таким образом, его опыты проводились на организменном уровне. Развитие микроскопа в начале 20 века позволило выявить клетки - материальный носитель наследственной инф, переведя исследования на клеточный уровень. Основываясь на результатах многочисленных опытов с мошками-дрозофилами, в 1911г Томас Морган сформулировал основные положения хромосомной теории наследственности .

    Гены в хромосоме расположены в линейно в определенных локусах . Аллельные гены занимают одинаковые локусы гомологичных хромосом.

    Гены,расположенные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе. Число групп сцепления равно n набору хромосом.

    Между гомологичными хромосомами возможен кроссинговер - обмен участками, который может нарушить сцепление генов. Вероятность того, что гены останутся сцеплены прямо пропорциональна расстоянию между ними: чем ближе расположены гены в хромосоме, тем выше вероятность их сцепления. Это расстояние исчисляется в морганидах: 1 морганиде соответствует 1% образования кроссоверных гамет.

    Для своих экспериментов, Морган использовал плодовых мушек, различающихся по 2 парам признаков: цвет серый(В) и черный(b); длина крыльев норма(V) и короткие(v).

    1) Дигибридное скрещивание – сначала скрещивали гомозиготные особи ААВВ и ааbb. Таким образом были получены аналогичные Менделю результаты: все особи с серым телом и нормальными крыльями.

    2) Анализирующее скрещивание проводилось с целью выведения генотипа гибридов 1 ого поколения. Дигетерозиготный самец был скрещен с рецессивной дигомозиготной самкой. Согласно 3 ему закону Менделя, можно было ожидать появление 4 фенотипов из-за независимой комбинации признаков: сн (BbVv), чк (bbvv), cк (Bbvv), чн (bbVv) в соотношении 1:1:1:1. Однако были получены лишь 2 комбинации: сн (BbVv) чк (bbvv).

    Таким образом, во втором поколении наблюдались только исходные фенотипы в соотношении 1:1.

    Такое отклонение от свободного комбинирования признаков обусловлено тем, что гены, определяющие цвет тела и длину крыльев у мушек дрозофил расположены в одной хромосоме и наследуются сцеплено . Получается, что дигетерозиготный самец дает лишь 2 сорта некроссоверных гамет, а не 4, как при дигибридном скрещивании организмов с несцепленными признаками.

    3) Анализирующее рецепроктное скрещивание - система скрещиваний, при которой генотипически различные родительские особи используются один раз в качестве материнской формы, другой раз в качестве отцовской.

    В этот раз Морган использовал дигетерозиготную самку и гомозиготного рецессивного самца. Так были получены 4 фенотипа, однако их соотношение не соответствовало тому, которое наблюдалось у Менделя при независимом комбинировании признаков. Число сн и чк составило 83% от всего потомства, а число ск и чн - всего 17%.

    Сцепление между генами, локализованными в одной хромосоме, нарушается в результате кроссинговера . Если точка разрыва хромосом лежит между сцепленными генами, то сцепление нарушается, и один из них переходит в гомологичную хромосому. Так, помимо двух сортов некроссоверных гамет , образуются еще два сорта кроссоверных гамет , в которых хромосомы обменялись гомологичными участками. Из них при слиянии развиваются кроссоверные особи. Согласно положению хромосомной теории, расстояние между генами, определяющими цвет тела и длину крыльев у дрозофил - 17 морганид - 17% кроссоверных гамет и 83% некроссоверных.

    Аллельное взаимодействие генов

    1) Неполное доминирование: при скрещивании гомозиготных растений душистого горошка с красными и белыми цветками, все потомство в первом поколении имеет розовые цветки - промежуточная форма. Во втором поколении расщепление по фенотипу соответствует расщеплению по генотипу в отношении 1кр: 2роз: 1бел.

    2) Сверхдоминирование : у доминантного аллеля в гетерозиготе признак выражен сильнее, чем в гомозиготе. При этом гетерозиготный организм Аа обладает лучшей приспособленностью, чем оба типа гомозигот.

    Серповидная клеточная анемия обусловлена мутантным аллелем s. В районах, где распространена малярия, гетерозиготы Ss более устойчивы к ней, чем гомозиготы SS.

    3) Кодоминирование : в фенотипе гетерозигот проявляются оба аллельных гена, в результате чего формируется новый признак. Но назвать один аллель доминантным, а другой рецессивным нельзя, тк они в равной степени влияют на фенотип.

    Формирование 4ой группы крови у человека. Аллель Ia определяет присутствие на эритроцитах антигена а, аллель Ib - присутствие антигена b. Присутствие в генотипе обоих аллелей обуславливает образование на эритроцитах обоих антигенов.

    4) Множественные аллели: в популяции оказывается больше двух аллельных генов. Такие гены возникают в результате мутации одного и того же локуса хромосомы. Помимо доминантного и рецессивного генов, появляются промежуточные аллели , которые по отношению к доминанте ведут себя как рецессивные, а по отношению к рецессиве - как доминантные. У каждой диплоидной особи аллельных генов может быть не более двух, но в популяции их число не ограничено. Чем больше аллельных генов, тем больше вариантов их комбинаций. Все аллели одного гена обозначаются одной буквой с разными индексами: А1, А2, а3 и тд.

    У морских свинок окраска шерсти определяется 5ю аллеями одного локуса, которые в различных сочетаниях дают 11 вариантов окраски. У человека по типу множественных аллелей наследуются группы крови по системе АВО. Три гена Io, Ia, Ib определяют наследование 4 групп крови человека (гены Ia Ib доминантные по отношению к Io).

    Неаллельные взаимодействие генов

    1) Комплиментарность или комплиментарное взаимодействие генов - явление, при котором два неаллельных доминантных или рецессивных гена дают новый признак . Такое взаимодействие генов наблюдается при наследовании форм гребня у кур:

    А гороховидный (А-вв); В- розовидный (ааВ-); АВ ореховидный; аавв листовидный.

    При скрещивании кур с гороховидным и розовидным гребнями, у всех гибридов 1 ого поколения будет ореховидный гребень. При скрещивании дигибридов 1 ого поколения с ореховидными гребнями, во 2 ом поколении появляются особи со всеми видами гребней в соотношении 9ор: 3роз: 3гор: 1лист. Однако, в отличие от расщепления при 3 ем законе Менделя, здесь отсутствует расщепление каждого аллеля в отношении 3:1. В других случаях комплиментарности, возможно 9:7 и 9:6:1.

    2) Эпистаз или эпистатическое взаимодействие генов - подавление действия генов одного аллеля генами другого. Подавляющий ген является супрессером или ингибитором.

    Доминантный эпистаз - ген-супрессор доминантный: наследование окраски перьев у кур. С - синтез пигмента, I - ген-подавитель. Куры с генотипом С-ii будут окрашенные. Остальные особи будут белые, так как в присутствии доминантного гена-супрессора подавляемый ген окраски не проявляется, или отсутствует ген, отвечающий за синтез пигмента (ссii). В случае скрещивания дигибридов, расщепление во втором поколении будет 13:3 или 12:3:1.

    Рецессивный эпистаз - геном подавителем является рецессивный ген, например наследование окраски мышей. В - синтез серого пигмента, b - черного; А способствует проявлению цветности, а - подавляет ее. Эпистаз будет проявляться лишь в тех случаях, где в генотипе будут два гена-супрессора аа. При скрещивании дигибридных особей при рецессивном эпистазе, расщепление во втором поколении 9:3:4.

    Бомбейский феномен проявляется в наследовании групп крови по системе АВО. Женщина с 1 группой крови (IoIo), которая вышла замуж за мужчину со 2 группой (IaIo), родила двух девочек с 4 (IaIb) и 1 (IoIo) группами. Это объясняется тем, что их мать обладала аллелем Ib, но его действие подавлялось редким рецессивным геном, который в гомозиготном состоянии оказал свое эпистатическое действие. В результате у женщины фенотипически проявлялась 1 группа.

    3) Полимерия - один и тот же признак определяется несколькими аллеями. При этом доминантные гены из разных аллельных пар влияют на степень проявления одного признака. Она зависит от количества доминантных генов в генотипе (чем больше доминантных генов, тем сильнее выражен признак) и от влияний условий среды.

    Полимерные гены принято обозначает одной буквой латинского алфавита с цифровыми индексами А 1 А 2 а 3 и тд. Ими определяются полигенные признаки . Так наследуются многие количественные и некоторые качественные признаки у животных и человека: рост, вес, цвет кожи. Наследование цвета зёрен пшеницы: каждый из доминантных генов определяет красный цвет, рецессивные гены - белый цвет. С увеличением количества доминантных генов интенсивность окраски повышается. И только если организм гомозиготен по всем парам рецессивных генов, зерна не окрашены. Так при скрещивании дигибридов расщепление в отношении 15окр:1бел.

    4) Плейотропия - один ген влияет на несколько признаков. Явление было описано Менделем, который обнаружил, что наследственных фактор у растений гороха может определять несколько признаков: красную окраску цветков, серую окраску семян и розовое пятно у основания листьев. Часто распространяется на эволюционно важные признаки: плодовитость, продолжительность жизни, способность выживать в крайних условиях среды.

    В некоторых случаях плеетропный ген является по отношению к одному признаку доминантным, а по отношению к другому - рецессивным. Если плеетропный ген только доминантный или только рецессивный по отношению ко всем определяемым им признакам, то характер наследования аналогичен закономерностям законов Менделя.

    Своеобразное расщепление наблюдается тогда, когда один из признаков рецессивен или летален (гомозигота ведет к смерти). Например черная шерсть каракульских овец и развитие рубца определяются одним геном, а серая шерсть и недоразвитый рубец определяются аллельными ему геном. Серый доминирует над черным, норма над аномалией. Гомозиготные особи по гену недоразвития рубца и серого цвета погибают, поэтому при скрещивании гетерозиготных особей четвертая часть потомства (серые гомозиготы) оказываются нежизнеспособны. Расщепление в соотношении 2:1.

    Пенетрантность и экспрессивность

    Генотип особи определяет лишь потенциальную возможность развития признака: реализация гена в признак зависит от влияния других генов и условий среды, поэтому одна и та же наследственная информация в разных условиях проявляется по-разному. Следовательно, наследуется не готовый признак, а тип реакции на действие среды.

    Пенетрантность - пробиваемость гена в признак. Выражается в процентах числа особей, несущих признак, к общему числу носителей гена, потенциально способного реализоваться в этот признак. Полная пенетрантность (100%) - у всех носителей гена имеется фенотипическое проявление признака. Неполная - действие гена проявляется не у всех носителей.

    Если ген побился в признак, он пенетрантен, но проявляться он может по-разному. Экспрессивность - степень выраженности признака. Различной экспрессивностью обладает ген, вызывающий уменьшение числа фасеток глаза у дрозофил. У гомозигот наблюдается различное число фасеток, вплоть до их полного отсутствия.

    Пенетрантность и экспрессивность зависят от влияния других генов и внешней среды.

    Изменчивость

    Изменчивость - способность приобретать новые признаки под действием внешних и внутренних факторов среды (морфологические, физиологические, биохимические). С изменчивостью связано разнообразие особей одного вида, что служит материалом для эволюционных процессов. Единство наследственности и изменчивости - условие непрекращающейся биологической эволюции. Различают несколько видов:

    1) Наследственная, генотипическая, неопределенная, индивидуальная

    Носит наследственных характер, и обусловлена рекомбинацией генов в генотипе и мутациями, передается по наследству. Бывает комбинативная и мутационная

    2) Ненаследственная, модификационная, фенотипическая, групповая, определенная

    Модификационная изменчивость - эволюционно закрепленные адаптивные реакции организма в ответ на изменение условий внешней среды, следствие взаимодействия среды и генотипа.Не передается по наследству, тк не приводит к изменению генотипа. В отличие от мутаций, многие модификации обратимы: загар, удойность коров и тд.

    Краткая форма обратной связи