В коре головного мозга локализуются нейроны. Локализация функций в коре больших полушарий. Цитоархитектоническая и миелоархитектоническая схема коры головного мозга

Большие полушария головного мозга представляют собой самый массивный отдел головного мозга. Они покрывают мозжечок и ствол мозга. Большие полушария составляют примерно 78% от общей массы мозга. В процессе онтогенетического развития организма большие полушария головного мозга развиваются из коечного мозгового пузыря нервной трубки, поэтому данный отдел головного мозга называется также конечным мозгом.

Большие полушария головного мозга разделены по средней линии глубокой вертикальной щелью на правое и левое полушария.

В глубине средней части оба полушария соединены между собой большой спайкой – мозолистым телом. В каждом полушарии различают доли; лобную, теменную, височную, затылочную и островок.

Доли мозговых полушарий отделяются одна от другой глубокими бороздами. Наиболее важны три глубокие борозды: центральная (роландова) отделяющая лобную долю от теменной, боковая (сильвиева) отделяющая височную долю от теменной, теменно-затылочная отделяющая теменную долю от затылочной на внутренней поверхности полушария.

Каждое полушарие имеет верхнебоковую (выпуклую), нижнюю и внутреннюю поверхность.

Каждая доля полушария имеет мозговые извилины, отделенные друг от друга бороздами. Сверху полушарие покрыто корой ~ тонким слоем серого вещества, которое состоит из нервных клеток.

Кора головного мозга – наиболее молодое в эволюционном отношении образование центральной нервной системы. У человека она достигает наивысшего развития. Кора головного мозга имеет огромное значение в регуляции жизнедеятельности организма, в осуществлении сложных форм поведения и становлении нервно-психических функций.

Под корой находится белое вещество полушарий, оно состоит из отростков нервных клеток – проводников. Из-за образования мозговых извилин общая поверхность коры головного мозга значительно увеличивается. Общая площадь коры полушарий составляет 1200 см2, причем 2/3 ее поверхности находится в глубине борозд, а 1/3 – на видимой поверхности полушарий. Каждая доля мозга имеет различное функциональное значение.



В коре большого мозга выделяют сенсорные, моторные и ассоциативные области.

Сенсорные областиКорковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.

Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние - туловища, на нижние отделы - руки, головы.

На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз. При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).



Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры.

Моторные области

Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двигательную реакцию. В то же время признано, что двигательная область является анализаторной.В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины - нижние конечности, в нижних - верхние.Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обеспечивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обус-ловлено наличие в ней значительного числа полисенсорныхнейронов.

Архитектоника коры больших полушарий мозга

Учение о структурных особенностях строения коры называется архитектоникой. Клетки коры больших полушарий менее специализированы, чем нейроны других отделов мозга; тем не менее определенные их группы анатомически и физиологически тесно связаны с теми или иными специализированными отделами мозга.

Микроскопическое строение коры головного мозга неодинаково в разных ее отделах. Эти морфологические различия коры позволили выделить отдельные корковые цитоархитектонические поля. Имеется несколько вариантов классификаций корковых полей. Большинство исследователей выделяет 50 цитоархитектонических полей, Микроскопическое строение их довольно сложное.

Кора состоит из 6 слоев клеток и их волокон. Основной тип строения коры шестислойной, однако, он не везде однороден. Существуют участки коры, где один из слоев выражен значительно, а другой – слабо. В других областях коры намечается подразделение некоторых слоев на подслои и т.д.

Установлено, что области коры, связанные с определенной функцией, имеют сходное строение. Участки коры, которые близки у животных и человека по своему функциональному значению имеют определенное сходство в строении. Те участки мозга, которые выполняют чисто человеческие функции (речь), имеются только в коре человека, а у животных, даже у обезьян, отсутствуют.

Морфологическая и функциональная неоднородность коры головного мозга позволила выделить центры зрения, слуха, обоняния и т.д., которые имеют свою определенную локализацию. Однако неверно говорить о корковом центре как о строго ограниченной группе нейронов. Специализация участков коры формируется в процессе жизнедеятельности. В раннем детском возрасте функциональные зоны коры перекрывают друг друга, поэтому их границы расплывчаты и нечетки. Только в процессе обучения, накопления собственного опыта практической деятельности происходит постепенная концентрация функциональных зон в отделенные друг от друга центры.Белое вещество больших полушарий состоит из нервных проводников. В соответствии с анатомическими и функциональными особенностями волокна белого вещества делят на ассоциативные, комиссуральные и проекционные. Ассоциативные волокна объединяют различные участки коры внутри одного полушария. Эти волокна бывают короткие и длинные. Короткие волокна обычно имеют дугообразную форму и соединяют соседние извилины. Длинные волокна соединяют отдаленные участки коры. Комиссуальными принято называть те волокна, которые соединяют топографически идентичные участки правого и левого полушарий. Комиссуральные волокна образуют три спайки: переднюю белую спайку, спайку свода, мозолистое тело. Передняя белая спайка соединяет обонятельные области правого и левого полушарий. Спайка свода соединяет между собой гиппокамповые извилины правого и левого полушарий. Основная же масса коммисуальных волокон проходит через мозолистое тело, соединяя между собой симметричные участки обоих полушарий головного мозга.

Проекционными называют те волокна, которые связывают полушария головного мозга с нижележащими отделами мозга – стволом и спинным мозгом. В составе проекционных волокон проходят проводящие пути, несущие афферентную (чувствительную) и эфферентную (двигательную) информацию.

Значение различных участков коры полушарий

головного мозга.

2. Двигательные функции.

3. Функции кожной и проприорицептивной

чувствительности.

4. Слуховые функции.

5. Зрительные функции.

6. Морфологические основы локализации функций в

коре головного мозга.

Ядро двигательного анализатора

Ядро слухового анализатора

Ядро зрительного анализатора

Ядро вкусового анализатора

Ядро кожного анализатора

7. Биоэлектрическая активность головного мозга.

8. Литература.


ЗНАЧЕНИЕ РАЗЛИЧНЫХ УЧАСТКОВ КОРЫ БОЛЬШИХ

ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА

С давних времен между учеными идет спор о местонахождении (локализации) участков коры головного мозга, связанных с различными функциями организма. Были высказаны самые разнообразные и взаимно противоположные точки зрения. Одни считали, что каждой функции нашего организма соответствует строго определенная точка в коре головного мозга, другие отрицали наличие каких бы то ни было центров; любую реакцию они приписывали всей коре, считая ее целиком однозначной в функциональном отношении. Метод условных рефлексов дал возможность И. П. Павлову выяснить ряд неясных вопросов и выработать современную точку зрения.

В коре головного мозга нет строго дробной локализации фун кций. Это следует из экспериментов над животными, когда после разрушения определенных участков коры, например двигательного анализатора, через несколько дней соседние участки берут на себя функцию разрушенного участка и движения животного восстанавливаются.

Эта способность корковых клеток замещать функцию выпавших участков связана с большой пластичностью коры головного мозга.

И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области.

Рисунок 1. Схема связи отделов коры с рецепторами.

1 – спинной или продолговатый мозг; 2 – промежуточный мозг; 3 – кора головного мозга


В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки.

В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры.

Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры.

Рассмотрим некоторые области, имеющие преимущественно то или иное значение. Схематическое расположение местонахождения этих областей приведено на рисунке 1.


Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма.

Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по спинному мозгу, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария. Вот почему кровоизлияние, ранение или какое-либо другое поражение одной из сторон больших полушарий влечет за собой нарушение двигательной деятельности мышц противоположной половины тела.

Рисунок 2. Схема отдельных областей коры больших полушарий головного мозга.

1 – двигательная область;

2 – область кожной

и проприорицептивной чувствительности;

3 – зрительная область;

4 – слуховая область;

5 – вкусовая область;

6 – обонятельная область


В передней центральной извилине центры, иннервирующие разные мышечные группы, расположены так, что в верхней части двигательной области находятся центры движений нижних конечностей, затем ниже-центр мышц туловища, еще ниже-центр передних конечностей и, наконец, ниже всех-центры мышц головы.

Центры разных мышечных групп представлены неодинаково и занимают неравномерные области.


Функции кожной и проприоцептивной чувствительности. Область кожной и проприоцептивной чувствительности у человека находится преимущественно позади центральной (роландовой) борозды в задней центральной извилине.

Локализация этой области у человека может быть установлена методом электрического раздражения коры головного мозга во время операций. Раздражение различных участков коры и одновременньш опрос больного об ощущениях, которые он при этом испытывает, дают возможность составить довольно четкое представление об указанной области. С этой же областью связано так называемое мышечное чувство. Импульсы, возникающие в проприорецепторах-рецепторах, находящихся в суставах, сухожилиях н мышцах, поступают преимущественно в этот отдел коры.

Правое полушарие воспринимает импульсы, идущие по центростремительным волокнам преимущественно с левой, а левое полушарие-преимущественно с правой половины тела. Этим объясняется то, что поражение, допустим, правого полушария вызовет нарушение чувствительности преимущественно левой стороны.

Слуховые функции. Слуховая область расположена в височной доле коры. При удалении височных долей нарушаются сложные звуковые восприятия, так как нарушается возможность анализа и синтеза звуковых восприятий.

Зрительные функции. Зрительная область находится в затылочной доле коры головного мозга. При удалении затылочных долей головного мозга у собаки наступает потеря зрения. Животное не видит, натыкается на предметы. Сохраняются только зрачковые рефлексы У человека нарушение зрительной области одного из полушарий вызывает выпадение половины зрения каждого глаза. Если поражение коснулось зрительной области левого полушария, то выпадают функции носовой части сетчатки одного глаза и височной части сетчатки другого глаза.

Такая особенность поражения зрения связана с тем, что зрительные нервы по пути к коре частично перекрещиваются.


Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А, Бец выступил с утверждением, что каждый учасгок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). В настоящее время удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов. Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека.

П
о И.П.Павлову, центр-это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.


Рисунок 3. Карта цитоархитектонических полей мозга человека (по данным института моэга АМН СССР) Вверху - верхнелатеральная поверхность,внизу- медиальная поверхносгь. Объяснение в тексте.


В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма.

1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражении, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6} и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.

2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от еет-чатки (зрительный анализатор, поле 77), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда отходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных функций.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где проецирована улитка. Повреждение ведет к глухоте.

2. Ядро зрительного анализатора находится в затылочной доле - поля 18, 19. На внутренней поверхности затылочной доли, по краям sulcus Icarmus, в поле 77 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза. При поражении ядра зрительного анализатора наступает слепотa. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле при поражении которого утрачивается ориентация в непривычной обстанвке.


3. Ядро вкусового анализатора, по одним данным, находится в нижней постцентральной извилине, близко к центрам мышц рта и языка, по другим - в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощу-ний. Установлено, что расстройство вкуса наступает при поражении поля 43.

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

4. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 7, 2, 3) и в пе верхней теменной области (поля 5 и 7).


Частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия (стереос - пространственный, гнозис - знание) связана с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.


Биоэлектрическая активность головного мозга.

Отведение биопотенциалов головного мозга - электроэнцефалография-дает представление об уровне физиологической активности головного мозга. Кроме метода электроэнцефалографии-записи биоэлектрических потенциалов, используется метод энцефалоскопии-регистрации колебаний яркости свечения множества точек мозга (от 50 до 200).

Электроэнцефалограмма является интегративным пространственно-временным показателем спонтанной электрической активности мозга. В ней различают амплитуду (размах) колебаний в микровольтах и частоту колебаний в герцах. В соответствии с этим в электроэнцефалограмме различают четыре типа волн: -, -, - и -ритмы. Для -ритма характерны частоты в диапазоне 8-15 Гц, при амплитуде колебаний 50-100 мкВ. Он регистрируется только у людей и высших обезьян в состоянии бодрствования, при закрытых глазах и при отсутствии внешних раздражителей. Зрительные раздражители тормозят -ритм.

У отдельных людей, обладающих живым зрительным воображением, -ритм может вообще отсутствовать.

Для деятельного мозга характерен (-ритм. Это электрические волны с амплитудой от 5 до 30 мкВ и частотой от 15 до 100 Гц Он хорошо регистрируется в лобных и центральных областях головного мозга. Во время сна появляется -ритм. Он же наблюдается при отрицательных эмоциях, болезненных состояниях. Частота потенциалов -ритма от 4 до 8 Гц, амплитуда от 100 до 150 мкВ Во время сна появляется и -ритм - медленные (с частотой 0,5-3,5 Гц), высокоамплитудные (до 300 мкВ) колебания электрической активности мозга.

Помимо рассмотренных видов электрической активности, у человека регистрируется Е-волна (волна ожидания раздражителя) и веретенообразные ритмы. Волна ожидания регистрируется при выполнении сознательных, ожидаемых действий. Она предшествует появлению ожидаемого раздражителя во всех случаях, даже при неоднократном его повторении. По-видимому, ее можно рассматривать как электроэнцефалографический коррелят акцептора действия, обеспечивающего предвидение результатов действия до его завершения. Субъективная готовность отвечать на действие стимула строго определенным образом достигается психологической установкой (Д. Н. Узнадзе). Веретенообразные ритмы непостоянной амплитуды, с частотой от 14 до 22 Гц, появляются во время сна. Различные формы жизне деятельности приводят к существенному изменению ритмов биоэлектрической активности мозга.

При умственной работе усиливается -ритм, -ритм при этом исчезает. При мышечной работе статического характера наблюдается десинхронизация электрической активности мозга. Появляются быстрые колебания с низкой амплитудой.Во время динамической работы пе-. риоды десинхронизированной и синхронизированной активности наблюдаются соответственно в моменты рабогы и отдыха.

Образование условного рефлекса сопровождается десинхронизацией волновой активности мозга.

Десинхронизация волн происходит при переходе от сна к бодрствованию. При этом веретенообразные ритмы сна сменяются

-ритмом, увеличивается электрическая активность ретикулярной формации. Синхронизация (одинаковые по фазе и направлению волны)

характерна для тормозного процесса. Она наиболее отчетливо выражена при выключении ретикулярной формации стволовой части мозга. Волны электроэнцефалограммы, по мнению большинства исследователей, являются результатом суммации тормозных и возбуждающих постсинаптических потенциалов. Электрическая активность мозга не является простым отражением обменных процессов в нервной ткани. Установлено, в частности, что в импульсной активности отдельных скоплений нервных клеток обнаруживаются признаки акустического и семантического кодов.

Кроме специфических ядер таламуса возникают и развиваются ассоциативные ядра, имеющие связи с неокортексом и определяющие развитие конечного мозга. Третьим источником афферентных воздействий на кору больших полушарий является гипоталамус, который играет роль высшего регуляторного центра вегетативных функций. У млекопитающих филогенетически более древние отделы переднего гипоталамуса связаны с...

Затрудняется формирование условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление. Большой мозг состоит из почти идентичных половин – правого и левого полушарий, которые связаны мозолистым телом. Комиссуральные волокна связывают симметричные зоны коры. Тем не менее, кора правого и левого полушарий не симметричны не только внешне, но и...

Подход к оценке механизмов работы высших отделов головного мозга с использованием условных рефлексов был столь успешным, что позволил Павлову создать новый раздел физиологии - «Физиологию высшей нервной деятельности», науку о механизмах работы больших полушарий головного мозга. БЕЗУСЛОВНЫЕ И УСЛОВНЫЕ РЕФЛЕКСЫ Поведение животных и человека представляет собой сложную систему взаимосвязанных...

Кора больших полушарий - материальная основа психической деятельности человека. Кора - серое вещество толщиной от 1,5 до 5 мм, содержит 14 млрд нервных клеток и имеет шестислойное строение. Кора - огромный ядерный центр, ядро, распластанное по поверхности полушарий.

Более 130 лет идет спор - есть ли в коре центры или нет и в каком объеме они оказывают влияние на «курируемые» функции: 1. Отвечают ли эти центры буквально за все (центр туризма, любви к живописи, к театру и пр.), или их влияние менее детализировано. 2. Кора - это один сплошной экранный центр, отвечающий за все функции.

Очевидно, истина, как всегда, где-то посередине.

Основоположником детального изучения клеточного состава коры был русский ученый, киевлянин Владимир Алексеевич Бец. В 1874 г. он опубликовал результат исследований с помощью собственного метода серийных срезов и окраски кармином. Бец выявил различное строение коры в различных ее участках и разработал карту цитоархитектоники коры. В последующем были созданы и другие карты: Бродмана с 52 цитоархитектоническими полями, Фогта со 150 миелоархитектоническими полями и др. Исследования в настоящнее время продолжаются в Институте мозга в Москве и в других странах.

Представления о локализации функций в коре головного мозга имеют большое практическое значение для решения задач топики поражений в полушариях мозга. Повседневный клинический опыт показывает, что существуют определенные закономерности зависимости расстройств функций от расположения патологического очага. Исходя из этого, клиницист и решает задачи топической диагностики. Однако так дело обстоит с простыми функциями: движением и чувствительностью. Функции более сложные, филогенетически молодые, не могут быть узколокализованными; в осуществлении сложных функций участвуют весьма обширные области коры, даже вся кора.

Работы В.А. Беца были внимательно изучены И.П. Павловым. С учетом этих данных, Иваном Петровичем Павловым были созданы основы нового и прогрессивного учения о локализации функций в головном мозге. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Павлов создал учение об анализаторах. По Павлову, анализатор - нервный механизм, анализирующий явления внешнего и внутреннего мира путем разложения сложного комплекса раздражений на отдельные элементы. Он начинается воспринимающим аппаратом и кончается в мозгу, то есть анализатор включает рецепторный аппарат, проводник нервных импульсов и корковый центр.

Павлов доказал, что корковый конец анализатора - это не строго очерченная зона. В нем есть ядро и рассеянные элементы. Ядро - место концентрации нервных клеток, где происходит высший анализ, синтез и интеграция. На его периферии, в рассеянных элементах, совершаются простые анализ и синтез. Площади рассеянных элементов соседних анализаторов перекрывают друг друга (рис.).

По Павлову - работа второй сигнальной системы неразрывно связана с функциями всех анализаторов, поэтому невозможно представить локализацию сложных функций второй сигнальной системы в ограниченных корковых полях. Павловым заложены основы учения о динамической локализации функций в коре. Представления о динамической локализации функций в коре предполагают возможность использования одних и тех же корковых структур в разнообразных сочетаниях для обслуживания различных сложных корковых функций. Так, ассоциативные пути объединяют анализаторы, способствуя высшей синтетической деятельности коры мозга. Сегодня ученые знают, что раздражение трансформируется в возбуждение, передающееся в корковый конец анализатора. Не ясно другое - где и как возбуждение трансформируется в ощущение? Какие структуры отвечают за это? Так, при раздражении зрительного поля в области шпорной борозды возникают «простые» галлюцинации в виде световых или цветовых пятен, искр, теней. Раздражение наружной поверхности затылочной доли дает «сложные» галлюцинации в виде фигур, движущихся предметов.

В двигательной зоне коры обнаружены клетки, дающие разряд импульсов на зрительные, слуховые, кожные раздражения, а в зрительной зоне коры выявлены нейроны, отвечающие электрическими разрядами на осязательные, звуковые, вестибулярные и обонятельные раздражители. Кроме того, были найдены нейроны, которые отвечают не только на «свой» раздражитель, как теперь говорят, раздражитель своей модальности, своего качества, но и на один-два чужих. Их назвали полисенсорными нейронами.

Данный раздел анатомии НС разделен на следующие подкатегории

Лекция 13

ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ ПОЛУШАРИЙ БОЛЬШОГО МОЗГА

    Общие положения

    Ядра первой сигнальной системы

    Ядра второй сигнальной системы

Вопрос 1

Локализация функций в коре больших полушарий

Нервные клетки коры больших полушарий специализированы для восприятия различных видов раздражений и передачи импульсов на другие поля и ядра ЦНС. И.П. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Различные анали­заторы тесно взаимосвязаны, поэтому в коре большого мозга осуществляются анализ и синтез, выработка ответных реакций, регулирующих любые вилы деятельности человека.

На основе строения и функций различных клеточных слоев вся кора разделена на 9 областей и 52 поля.

Области коры больших полушарий:

Предцентральная,

Постцентральная,

Островковая,

Височная,

Затылочная,

Верхняя теменная,

Нижняя теменная,

Лимбическая.

В коре большого мозга различают ядра и рассеянные вокруг них элементы.

Яд­ро – это место концентрации нервных клеток коры, составляющих точную проекцию всех элементов определенного периферического рецептора.

В ядрах коры происходят высший анализ, синтез и интеграция функций. Таким образом, кору полушарий большого мозга схематично можно представить как совокупность ядер различ­ных анализаторов, между которыми находятся рассеянные эле­менты, относящиеся к разным (смежным) анализаторам.

Рассмотрим положение некоторых корковых концов различных анализаторов (ядер) по отношению к извилинам и долям полушарий большого мозга у человека (в соответствии с цитоархитектоническими картами).

В 1909 году немецкий невролог Корбиниан Бродман опубликовал карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей.

Рисунок 1 – Боковая поверхность мозга с пронумерованными полями Бродмана

Рисунок 2 – Центральная часть мозга с пронумерованными полями Бродмана.

Поля 3, 1 и 2 – соматосенсорная область, первичная зона, находятся в постцентральной извилине

Поле 4 – моторная область, располагается в пределах прецентральной извилины

Поле 5 – вторичная соматосенсорная зона, располагается в пределах верхней теменной дольки

Поле 6 – премоторная кора и дополнительная моторная кора (вторичная моторная зона), располагается в передних отделах прецентральной и задних отделах верхней и средней лобной извилин.

Поле 7 – третичная моторная зона, расположена в верхних отделах теменной доли между постцентральной извилиной и затылочной долей.

Поле 8 – располагается в задних отделах верхней и средней лобной извилин, включает в себя центр произвольных движений глаз

Поле 9 – дорсолатеральная префронтальная кора

Поле 10 – передняя префронтальная кора

Поле 11 – обонятельная область

Поле 17 – ядерная зона зрительного анализатора – зрительная область, первичная зона

Поле 18 – ядерная зона зрительного анализатора - центр восприятия письменной речи, вторичная зона

Поле 19 – ядерная зона зрительного анализатора, вторичная зона (оценка значения увиденного)

Поле 20 – нижняя височная извилина (центр вестибулярного анализатора)

Поле 21 – средняя височная извилина (центр вестибулярного анализатора)

Поле 22 – ядерная зона звукового анализатора

Поле 24 – детектор ошибок

Поле 28 – проекционные поля и ассоциативная зона обонятельной системы

Поле 32 – дорсальная зона передней поясной коры. рецепторная область эмоциональных переживаний.

Поле 37 – акустико-гностический сенсорный центр речи. это поле контролирует трудовые процессы речью, ответственно за понимание речи.

Поле 39 – ангулярная извилина, часть зоны Вернике (центр зрительного анализатора письменной речи)

Поле 40 – краевая извилина, часть зоны Вернике (двигательный анализатор сложных профессиональных, трудовых и бытовых навыков)

Поле 41 – ядерная зона звукового анализатора, первичная зона

Поле 42 – ядерная зона звукового анализатора, вторичная зона

Поле 43 – вкусовая область

Поле 44 – центр брока

Поле 45 – триангулярная часть поля Бродмана (музыкальный моторный центр)

Поле 46 – двигательный анализатор сочетанного поворота головы и глаз в разные стороны

Поле 47 – ядерная зона пения, речедвигательная его составляющая

Поле 52 – ядерная зона слухового анализатора, которая отвечает за пространственное восприятие звуков и речи

Среди ядер коры больших полушарий рассматривают ядра, которые име­ются как в коре полушарий большого мозга человека, так и животных. Они специализированы на восприятии, анализе и синтезе сигналов, поступающих из внешней и внутренней среды, составляющих, по определению И.П. Павлова, первую сигнальную систему действительности. Эти сигналы воспринимаются в виде ощущений, впечатлений и представлений.

Вторая сигнальная система имеется только у человека и обусловлена развитием речи. Речевые и мыслительные функции выполняются при участии всей коры, однако в коре большого мозга можно выделить определенные зоны, ответственные толь­ко за речевые функции. Так, двигательные анализаторы речи (устной и письменной) располагаются рядом с двигательной об­ластью коры, точнее в тех участках коры лобной доли, которые примыкают к предцентральной извилине.

Вопрос_2

Ядра первой сигнальной системы

Ядра первой сигнальной системы

1. Ядро коркового анализатора обшей (температурной, боле­вой, осязательной) и проприоцептивной чувствительности обра­зуют нервные клетки, залегающие в коре постцентральной из­вилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7). Проводящие чувствительные пути, следующие к коре большого мозга, перекрещиваются на уровне спинного мозга (пути болевой, температурной чувствительнос­ти, осязания и давления), и на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела.

2. Ядро двигательного анализатора находится в основном в так называемой двигательной области коры, к которой относятся предцентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5-м слое (пластинке) коры предцентральной извилины залегают гигантопирамидальные нейроны (клетки Беца). И.П. Павлов относил их к вставочным и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. В верхних участках предцентральной извилины и в парацентральной дольке расположе­ны клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся двига­тельные центры, регулирующие деятельность мышц лица.

3. Ядра анализатора, обеспечивающее функции сочетания поворота головы и глаз в противоположную сторону, расположе­но в задних отделах средней лобной извилины, в так называе­мой премоторной зоне (поле 8). Сочетанный поворот глаз и го­ловы регулируется не только при поступлении в кору лобной извилины проприоцептивных импульсов от мышц глазного яб­лока, но и при поступлении импульсов из сетчатки глаза в поле 17 затылочной доли, где находится ядро зрительного анализа­тора.

4. Ядро двигательного анализатора расположено в об­ласти нижней теменной дольки, в надкраевой извилине (глубо­кие слои цитоархитектонического поля 40). Функциональное значение этого ядра - синтез всех целенаправленных движений. Это ядро асимметрично. У прав­шей оно находится в левом, а у левшей - в правом полушарии.

Способность координировать сложные целенаправленные дви­жения приобретается индивидуумом в течение жизни в резуль­тате практической деятельности и накопления опыта. Целена­правленные движения происходят за счет образования времен­ных связей между клетками, расположенными в предцентральной и надкраевой извилинах. Поражение поля 40 не вызывает паралича, а приводит к потере способности производить слож­ные координированные целенаправленные движения - к апраксии (praxis - практика).

    Ядро кожного анализатора одного из частных видов чувст­вительности, которому присуща функция узнавания предметов на ощупь, - стреогнозии, находится в коре верхней те­менной дольки (поле 7). Корковый конец этого анализатора на­ходится в правом полушарии и представляет собой проекцию рецепторных полей левой верхней конечности. Так, ядро этого анализатора для правой верхней конечности находится в левом полушарии. Поражение поверхностных слоев коры в этом отде­ле мозга сопровождается утратой функции узнавания предметов на ощупь, хотя другие виды общей чувствительности при этом остаются сохранными.

    Ядро слухового анализатора расположено в глубине лате­ральной борозды, на обращенной к островку поверхности сред­ней части верхней височной извилины (там, где видны попереч­ные височные извилины, или извилины Гешля, - поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализа­тора каждого из полушарий, подходят проводящие пути от ре­цепторов как левой, так и правой стороны. В связи с этим одно­стороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение со­провождается «корковой глухотой».

    Ядро зрительного анализатора расположено на медиаль­ной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды (поля 17,18,19). Ядро зрительного анализатора правого полушария связано с прово­дящими путями от латеральной половины сетчатки правого глаза и медиальной половины сетчатки левого глаза. В коре за­тылочной доли левого полушария проецируются соответствен­но рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Как и для ядра слухового анализатора, только двустороннее поражение ядер зрительного анализатора приводит к полной «корковой слепо­те». Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, но не слепо­той. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в не­знакомой обстановке.

8. Ядро обонятельного анализатора находится на нижней по­верхности височной доли полушария большого мозга, в области крючка и отчасти в области гиппокампа. Эти участки с точки зрения филогенеза относятся к наиболее древним частям коры большого мозга. Чувство обоняния и чув­ство вкуса тесно взаимосвязаны, что объясняется близким рас­положением ядер обонятельного и вкусового анализаторов. От­мечено также (В.М. Бехтерев), что вкусовое восприятие наруша­ется при поражении коры самых нижних отделов постцентраль­ной извилины (поле 43). Ядра вкусового и обонятельного ана­лизаторов обоих полушарий связаны с рецепторами как левой, так и правой стороны тела.

Вопрос 3

Ядра второй сигнальной системы

9. Ядро двигательного анализатора письменной реч и (анализа­тора произвольных движений, связанных с написанием букв и других знаков) находится в заднем отделе средней лобной изви­лины (поле 40). Оно тесно прилежит к тем отделам предцентральной извилины, которым присуща функция двигательного анализатора руки и сочетанного поворота головы и глаз в про­тивоположную сторону. Разрушение поля 40 не приводит к на­рушению всех видов движений, а сопровождается лишь утратой способности производить рукой точные и тонкие движения приначертании букв, знаков и слов (аграфия).

10. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах ниж­ней лобной извилины (поле 44, или центра Брока). Это ядро граничит с теми отделами предцентральной извилины, кото­рые являются анализаторами движений, производимых при сокращении мыши головы и шеи. Это понятно, так как в рече-двигательном центре осуществляется анализ движений всех мышц: губ, щек, языка, гортани, принимающих участие в акте устной речи (произношение слов и предложении). Поврежде­ние участка коры этой области (поле 44) приводит к двига­тельной афазии, т.е. утрате способности произносить слова. Такая афазия не связана с потерей функции мышц, участву­ющих в речеобразовании. Более того, при поражении поля 44 не утрачивается способность к произношению звуков или пе­нию.

В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. По­ражение поля 45 сопровождается вокальной амузией - не­способностью к составлению и воспроизведению музыкальных фраз и аграмматизмом - утратой способности состав­лять осмысленные предложения из отдельных слов. Речь таких больных состоит из несвязанного по смысловому значению на­бора слов.

11. Ядро слухового анализатора устной речи тесно взаимосвя­зано с корковым центром слухового анализатора и располагает­ся, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извили­ны, на стороне, обращенной к латеральной борозде полушария большого мозга (поле 42).

Поражение ядра не нарушает слухового восприятия звуков вообще, однако при этом утрачивается способность понимать слова, речь (словесная глухота, или сенсорная афазия). Функция этого ядра состоит в том, что человек не только слы­шит и понимает речь другого человека, но и контролирует свою собственную.

В средней трети верхней височной извилины (поле 22) нахо­дится ядро коркового анализатора, поражение которого сопро­вождается наступлением музыкальной глухоты: музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим сло­весное обозначение предметов, действий, явлений, т.е. воспри­нимающим сигналы сигналов.

12. Ядро зрительного анализатора письменной речи располо­жено в непосредственной близости к ядру зрительного анализа­тора - в угловой извилине нижней теменной дольки (поле 39). Поражение этого ядра приводит к утрате способности воспри­нимать написанный текст, читать (алексия).

Кафедра неврологии и нейрохирургии СибГМУ

Кора головного мозга

Кора больших полушарий головного мозга - эволюционно
наиболее молодое образование, достигшее у человека по
отношению к остальной массе головного мозга наибольших
величин
У человека масса коры больших полушарий составляет в
среднем 78% от общей массы головного мозга
Кора больших полушарий имеет исключительное значение в
регуляции жизнедеятельности организма, осуществлении
сложных норм поведения и в становлении нервнопсихических функций
Кора больших полушарий может нормально
функционировать лишь в тесном взаимодействии с
подкорковыми образованиями

Основание головного мозга

.

Цитоархитектоническая и миелоархитектоническая схема коры головного мозга

.

В учении о высшей нервной деятельности
выделяют два основных раздела
Первый - стоит ближе к нейрофизиологии и
рассматривает общие закономерности взаимодействия
нервных центров, динамику процессов возбуждения
и торможения
Н.П.
Бехтерева
Второй раздел рассматривает конкретные механизмы
отдельных мозговых функций, таких, как речь, память,
восприятие, произвольные движения, эмоции
Этот раздел близко примыкает к психологии и нередко
обозначается как психофизиология
Нейропсихология – клиническая дисциплина
разрабатывает методы точной диагностики корковых
поражений и принципы коррекционных
мероприятий
.
Один из основателей нейропсихологии – выдающийся
отечественный ученый А.Р. Лурия (1902-1977г.)
А.Р.
Лурия

Клетки коркового вещества в значительно меньшей
степени специализированы, чем ядра подкорковых
образований
Компенсаторные возможности коры весьма высоки -
функции пораженных клеток могут брать на себя другие
нейроны; поражение довольно значительных участков
коркового вещества может клинически проявляться очень
стерто (клинические немые зоны)
Отсутствие узкой специализации корковых нейронов
создает условия для возникновения самых разнообразных
межнейронных
связей,
формирования
сложных
«ансамблей»
нейронов,
регулирующих
различные
функции; в этом важнейшая основа способности к
обучению
Теоретически возможное число связей между десятками
миллиардов клеток коры головного мозга настолько
велико, что. в течение жизни человека значительная часть
их остается неиспользованной

Связь коры с «периферическими» образованиями – рецепторами и
эффекторами – обусловливает специализацию отдельных ее участков
Различные области коры связаны со строго определенными типами
рецепторов, образуя корковые отделы анализаторов
Анализатор – специализированная физиологическая система,
обеспечивающая
прием
и
переработку
определенного
типа
раздражений
Различают периферический отдел – собственно рецепторные
образования и совокупность промежуточных центров
Наиболее важные центры расположены в зрительном бугре,
являющемся коллектором всех видов чувствительности, и в коре
больших полушарий
По И. П. Павлову, мозговой центр, корковый отдел анализатора,
состоит из «ядра» и «рассеянных элементов»
«Ядро» - однородная в морфологическом отношении группа клеток с
точной проекцией рецепторных полей. «Рассеянные элементы»
находятся в окружности
или в определенном отдалении от «ядра»: ими
.
осуществляется более элементарный и менее дифференцированный
анализ и синтез поступающей информации

Строение анализатора Первичные, вторичные и третичные поля

Каждый анализатор представлен в симметричных
отделах правого и левого полушарий мозга
Двигательный и чувствительный анализаторы
связаны с противоположной половиной тела
Корковые представительства слухового, вкусового
и обонятельного анализаторов в каждом
полушарии имеют связи с обеими сторонами
В зрительную кору проецируется информация от
половины поля зрения каждого глаза, причем в
левое полушарие – от правых половин, в правое –
от левых половин
полей зрения
.

В
случае
выраженной
леворукости
доминантное правое полушарие
В
процессе
воспитания
родителей приучают детей
правой рукой
Амбидекстрия
обеими руками
.

большинство
пользоваться
одинаковое
владения

Функциональная асимметрия мозга

При доминировании правого полушария
преобладает синтез, образное
мышление.
Перескакивают с одного на другое,
часто оставляют дела незавершенными

Функциональная асимметрия мозга

При доминировании левого полушария
наблюдаются спокойствие,
доброжелательность, логика, анализ,
врожденная грамотность, хорошая
ориентировка на местности; хорошие
математики, программисты
Для праворуких рекомендовано
рисовать левой рукой и наоборот

Функциональная асимметрия мозга

Полушария мозга работают
попеременно -2 часа одно, 2 часа
другое
При рождении (знать час рождения)
активизируется правое полушарие
Постоянно идет смена активности
полушариев

Строение анализатора Первичные поля

Микроскопическая структуры корковых отделов анализаторов:
в каждом отделе существуют 2 типа клеточных зон
Нижние слои коры имеют связи с периферическими
рецепторами (IV слой) и с мускулатурой (V слой) и носят
название «первичных», или «проекционных» корковых зон
вследствие их непосредственной связи с периферическими
отделами анализатора
Такая структура обнаруживается в затылочной зоне, куда
проецируются
зрительные
пути,
в
височной,
где
заканчиваются слуховые пути, в задней центральной
извилине - корковом отделе чувствительного анализатора, в
передней центральной извилине - корковом двигательном
центре
В первичных, или проекционных, зонах наблюдается высокая
избирательность в приеме информации и специальная
.
представленность
отдельных рецепторных зон

Строение анализатора Вторичные поля

Над
«первичными»
зонами
надстраиваются
системы
«вторичных» зон (II и III слои), в которых преобладают
ассоциативные связи с другими отделами коры проекционно-ассоциативные
Для них характерны гораздо меньшая специализированность в
приеме информации и отсутствие прямой связи с периферией,
они способны образовывать внутри себя сложные комплексы,
в которых фиксируется прошлый опыт
Вторичные клеточные зоны обеспечивают более сложную
обработку информации и формируют при каждом
анализаторе специализированные блоки памяти
.

Строение анализатора Третичные поля

«Зоны
перекрытия»
корковых
представительств
отдельных
анализаторов
У человека они занимают весьма значительное место и
расположены в теменно-височно-затылочной области и в лобной
зоне
Третичные зоны обеспечивают выработку сложных, интегративных
реакций, среди которых у человека первое место занимают -
осмысленные действия
В третичных зонах
происходят операции планирования и контроля
формируются
центры
речи,
письма,
счета,
зрительнопространственной ориентировки
фиксируются навыки, приобретенные человеком в процессе его
социального обучения
.
проводится анализ средовых воздействий
организация ответных реакций и обучения

Гнозис и праксис

Гнозис (узнавание): анализ средовых воздействий на высшем уровне –
распознавание - сопоставление получаемой информации с накопленной
ранее
Операции гнозиса могут осуществляться как в пределах 1 анализатора, так
и при взаимодействии анализаторов
Праксис (действие): выработка программ действий и осуществление этих
программ, ибо ни одно действие невозможно без рецепторного контроля
Память необходима в операциях гнозиса и праксиса
Построение программы действий – это прежде всего подбор готовых
шаблонов, опять-таки хранящихся в памяти; блоки памяти существуют при
каждом анализаторе, а также на уровне межанализаторных систем
Особое место занимает смысловая память, являющаяся основой языка и
.
мышления

Первая и вторая сигнальные системы

Первая сигнальная система связана с деятельностью отдельных
анализаторов и осуществляет первичные этапы гнозиса и
праксиса, интеграцию сигналов, поступающих по каналам
отдельных анализаторов, и формирование ответных действий
с учетом состояния внешней и внутренней среды, а также
прошлого опыта
Вторая сигнальная система – объединяет системы различных
анализаторов, делая возможным осмысленное восприятие
окружающего, отношение к окружающему миру «со знанием и
пониманием»
Этот уровень интеграции связан с речевой деятельностью,
причем понимание речи (речевой гнозис) и использование речи
как средства обращения и мышления (речевой праксис) не только
взаимосвязаны,
но
и
обусловлены
различными
нейрофизиологическими механизмами
.

Типы личности (по И.П. Павлову)

Художественный (первосигнальный)
Мыслительный (второсигнальный)
Средний (промежуточный) типы
Любой ребенок в процессе развития совершает эволюцию от
холерического,
художественного
темперамента
к
уравновешенному, мыслительному
Существуют дети явно возбудимые и явно заторможенные,
энергичные и пассивные, самоуверенные и робкие, выносливые
и утомляемые

Основные центры коры больших полушарий Лобная доля

Двигательный анализатор располагается в передней центральной
извилине и парацентральной дольке
В средних слоях расположен анализатор кинестетических раздражений,
поступающих от скелетных мышц, сухожилий, суставов и костей
В V и отчасти VI слое - гигантские пирамидные клетки Беца, волокна
которых формируют пирамидный путь
Передняя центральная извилина имеет определенную соматотопическую
проекцию. В верхних отделах извилины проецируются мышцы нижних
конечностей, в нижних - лица. Туловище, гортань, глотка представлены в
обоих полушариях
Центр поворота глаз и головы в противоположную сторону
расположен в средней лобной извилине в премоторной области. Работа
центра тесно связана с системой заднего продольного пучка,
вестибулярными ядрами, образованиями стриопаллидарной системы, а
также с корковым отделом зрительного анализатора
В задних отделах верхней лобной извилины представлен центр, дающий
начало лобно-мостомозжечковому
пути
.
Эта область коры участвует в обеспечении координации движений,
связанных с прямохождением, сохранением равновесия стоя, сидя и
регулирует работу противоположного полушария мозжечка

Лобная доля

Моторный центр речи (центр речевого праксиса) находится в задней
части нижней лобной извилины - извилине Брока
Центр обеспечивает анализ кинестетической импульсации от мышц
речедвигательного аппарата, хранение и реализацию «образов»
речевых автоматизмов, формирование устной речи, тесно связан с
расположенной кзади от него проекционной зоной губ, языка и гортани
и с находящимся кпереди от него музыкальным моторным центром
Музыкальный
моторный
центр
обеспечивает
определенную
тональность, модуляцию речи, а также способность составлять
музыкальные фразы и петь
Центр письменной речи локализуется в заднем отделе средней лобной
извилины в непосредственной близости от проекционной корковой
зоны руки
Центр обеспечивает автоматизм письма и функционально связан с
центром Брока

Топическая диагностика корковых поражений

Поражение лобной доли:
Передняя центральная извилина: проявляется в виде моноплегий,
гемиплегий, недостаточности VII и XII нервов по центральному типу
Раздражение этой области вызывает фокальные судорожные припадки (так
называемая моторная джексоновская эпилепсия)
Поражение заднего отдела средней лобной извилины (корковый центр
взора) приводит к параличу или парезу взора - невозможности сочетанного
поворота глазных яблок в сторону, противоположную локализации очага. В
тяжелых случаях глазные яблоки фиксируются и крайнем отведении и
«смотрят на очаг»
Раздражение в области коркового центра взора вызывает адверсивные
судорожные припадки, начинающиеся с поворота головы и глазных яблок в
сторону, противоположную очагу
Поражение моторного центра речи (центра Брока) сопровождается
развитием моторной афазии, которая может сочетаться с аграфией
Патологические процессы в лобной доле характеризуются так же
появлением контралатеральной гемиатаксии (нарушение корковомозжечковой связи), симптомов орального автоматизма, хватательных
рефлексов

Поражение лобной доли

Изменения психики: страдает целенаправленность
психических процессов, утрачивается способность к
перспективному планированию действий, возникают
абулия (слабоволие), апатия, потеря инициативности.
Часто наблюдаются эйфория, снижение самокритики,
наклонность к грубым, плоским шуткам, над которыми
обычно больной смеется первым (лобный юмор),
неряшливость, утрата чувства дистанции в общении с
людьми
В отдельных случаях психические изменения
напоминают симптоматику шизофрении
(индифферентность, абулия, потеря личностной
активности), но чаще сопровождаются и другими
признаками поражения лобной доли

Наружная поверхность полушария головного мозга

Ядро двигательного анализатора
Ядро кожного анализатора
Центр Вернике
Центр амнестической
афазии
Центр Брока
.
Центр семантической
афазии

Теменная доля

Центр кожного анализатора - в задней центральной извилине
полей и коре верхней теменной области (проецируется тактильная,
болевая, температурная чувствительность противоположной
половины тела)
В верхних отделах проецируется чувствительность ноги, в нижних
отделах - чувствительность лица
Кзади от средних отделов задней центральной извилины
располагается
центр
стереогнозиса,
обеспечивающего
способность узнавания предметов на ощупь
Кзади от верхних отделов задней центральной извилины
располагается центр, обеспечивающий способность узнавания
собственного тела, его частей, их пропорций и взаимоположения
Центр праксиса локализуется в нижней теменной дольке слева,
надкраевой извилине
В нижних отделах передней и задней центральных извилин
располагается. центр анализатора интероцептивных импульсов
внутренних органов и сосудов, связан
с
подкорковыми
вегетативными образованиями

Поражение теменной доли

В области задней центральной извилины проявляется
в виде моноанестезии, гемианестезии, сенситивной
гемиатаксии
Раздражение этой области вызывает фокальные
сенсорные джексоновские припадки: приступы
онемения, покалывания, жжения, парестезии в
соответствующих участках тела
При поражении центров сенситивного гнозиса
возникают астереогноз, нарушения схемы тела
(аутотопагнозия, псевдополимелия), анозогнозия
(неузнавание собственного дефекта), алексия,
акалькулия (неспособность к счету)

Височная доля

Центр слухового анализатора располагается в средних отделах верхней
височной извилины, на поверхности, обращенной к островку (извилина
Гешля), обеспечивает проекцию улитки, а также хранение и
распознавание слуховых образов
Акустико-гностический центр располагается в задних отделах
височной доли. Обеспечивает восприятие собственной и чужой речи.
Центр вестибулярного анализатора располагается в нижних отделах
наружной поверхности височной доли, является проекционным,
находится в тесной связи с нижнебазальными отделами височных
долей,
дающими
начало
затылочно-височному
корково-мостомозжечковому пути
Центр обонятельного анализатора находится в древней части-коры
мозга - в крючке и аммоновом роге и обеспечивает проекционную
функцию, а также хранение и распознавание обонятельных образов
. анализатора располагается в ближайшем соседстве
Центр вкусового
центром обонятельного анализатора, т. е. в крючке и аммоновом роге,
самом нижнем отделе задней центральной извилины, а также
островке;
обеспечивает
проекционную
функцию,
хранение
распознавание вкусовых образов
с
в
в
и

Поражение височной доли:

В области коркового центра слухового анализатора приводит к появлению
слуховой агнозии. Поражение сенсорного центра речи Вернике наступает
сенсорная афазия
Нарушение памяти (амнезия)
При раздражении височных отделов коры могут возникать нарушения
памяти, сумеречные состояния, сложные психомоторные автоматизмы
Раздражение височных отделов может сопровождаться обонятельными,
вкусовыми, слуховыми галлюцинациями
Поражение недоминантной височной доли ведет к нарушению
распознавания выражения лица, интонации голоса, возникает
прозопагнозия
Нарушение деятельности височных долей ведет к частой смене
настроения непредсказуемости поведения и реакций, чрезмерная
фиксация на религиозных проблемах
Ощущение уже виденного (déjà vu) или никогда не виденного (jamais vu)
Безотчетные тревоги и страхи
Приступы судорог

Внутренняя поверхность полушария головного мозга

.
Центр обоняния
Центр зрения

Затылочная доля

Центр зрительного анализатора располагается в
затылочной доле
Поле 17 является проекционной зрительной
зоной, поля 18 и 19 обеспечивают хранение и
распознавание зрительных образов, зрительную
ориентацию в непривычной обстановке
На границе височной, затылочной и теменной
долей располагается центр анализатора
письменной речи, который тесно связан с
центром Вернике височной доли, с центром
зрительного анализатора затылочной доли, а
также с центрами теменной доли
Центр чтения
обеспечивает распознавание и
.
хранение образов письменной речи

Поражение затылочной доли

Гомонимная (одноименная) гемианопсия. Квадрантная гемианопсия:
при поражении клина – нижнеквадрантная, язычной –
верхнеквадрантная
Зрительная агнозия (поражение наружной поверхности затылочных
долей)
Возможно развитие алексии акалькулии (оптико-агностический
варианты), затылочной атаксии
Психосенсорные расстройства: метаморфопсии (восприятие предметов
с искаженной формой); макропсия, микропсия, порропсия (восприятие
предметов более удаленными, чем в действительности)
Утрата рефлекторных движений глазных яблок (на внезапную угрозу, во
время сна) при сохранности произвольных
При раздражении внутренней поверхности з.д. возникают фотомы –
простые зрительные ощущения. Раздражение наружной поверхности
сопутствуют более сложные зрительные ощущения и зрительные
галлюцинации (фантастически, цветные и кинематографические
картинки)

Гнозис и его расстройства

Наша ориентировка в окружающем мире связана с узнаванием формы,
величины, пространственной соотнесенности
предметов и с
пониманием их значения, которое заключено в названии предмета
Рецепторный аппарат и передача сенсорных импульсов при
поражениях высших гностических механизмов сохраняются, но
интерпретация этих импульсов нарушается
В результате возникает расстройство гнозиса - агнозия, суть которой в
том, что при сохранности восприятия предметов теряется ощущение их
«знакоместа» и окружающий мир, ранее такой знакомый в деталях
становится чуждым, непонятным, лишенным значения
Гнозис - это процесс непрерывного обновления, уточнения,
конкретизации образа, хранимого в матрице памяти, под влиянием
повторного сопоставления его с принимаемой информацией
.

Гнозис и его расстройства

Чаще нарушается гнозис в какой-либо одной анализаторной
системе
Зрительные агнозии возникают при поражении затылочных
отделов коры: больной видит предмет, но не узнает его
В одних случаях больной правильно описывает внешние
свойства предмета (цвет, форму, величину), однако узнать
предмет не может, но если дать больному предмет в руки, то он
при ощупывании узнает его
Иногда больной не узнает знакомые лица; некоторые больные с
подобным расстройством вынуждены запоминать людей по
каким-то другим признакам (одежда, родинка и т. д.)
Нередко при зрительных агнозиях страдает и узнавание букв,
цифр (алексия), возникает потеря способности к чтению
Для исследования зрительного гнозиса используют набор
предметов: предъявляя их обследуемому, просят определить,
описать их внешний вид, сравнить, какие предметы больше,
какие меньше;. применяют также набор картинок, цветных,
однотонных и контурных

Гнозис и его расстройства

Поражении височной доли: слуховые агнозии (извилина Гешле)
Больной не узнает знакомые ранее звуки: тиканье часов, звон
колокольчика, шум льющейся воды. Возможны нарушения узнавания
музыкальных мелодий - амузия
Поражении теменной области: сенситивные агнозии (обусловлены
нарушением узнавания тактильных, болевых, температурных,
проприоцептивных образов или их сочетаний)
Астереогноз. При некоторых вариантах астереогноза больной не
только не может определить предмет на ощупь, но и не в состоянии
определить форму предмета, особенность его поверхности
Анозогнозия - больной не осознает своего дефекта, например,
паралича
Расстройства схемы тела, пальцевая агнозия Герстмана
.

Праксис и его расстройства

Под праксисом понимают целенаправленное действие. Любой
двигательный акт не может быть точно выполнен без постоянного
афферентного контроля; неврологической основой такого контроля
является система глубокой чувствительности, информирующая
двигательные центры о степени напряжения сухожилий, мышц, о
положении конечностей в пространстве
Ведущую роль афферентного, кинестетического контроля в регуляции
движений убедительно раскрыли выдающиеся отечественные
физиологи Н.А. Бернштейн и П.К. Анохин
Благодаря кинестетической системе между исполнительным органом
и командным центром образуется звено т.н. обратной связи. По
каналу обратной связи постоянно поступает информация о ходе
выполнения
двигательных команд и тем самым создается
систематическая коррекция выполняемого движения
.

Праксис и его расстройства

Апраксия – при этом расстройстве нет ни параличей, ни нарушений
тонуса или координации и даже возможны простые произвольные
движения, но более сложные, чисто человеческие двигательные акты
нарушаются. Больной вдруг оказывается не в состоянии выполнять
такие простые действия, как рукопожатие, застегивание пуговиц,
причесывание, зажигание спички
Апраксия возникает при поражении теменно-височно-затылочной
области доминантного полушария (предварительный афферентный
анализ и синтез); при этом страдают обе половины тела
Апраксия может возникать также при поражении субдоминантного
правого полушария (у правшей) и мозолистого тела, связывающего
оба полушария; в этом случае апраксия определяется только слева
При апраксии страдает план действия, т. е. составление
непрерывной цепочки двигательных автоматизмов
Стойкость
двигательной
задачи,
выбор
автоматизмов
и
.
формирование «кинетической мелодии» регулируются лобными
долями

Виды апраксии

Моторная апраксия. Больной не может выполнять действий по заданию и
даже по подражанию
Просят разрезать бумагу ножницами, зашнуровать ботинок, разлиновать
бумагу при помощи карандаша и линейки (больной, хотя и понимает
задание, не может его выполнить, проявляя полную беспомощность)
Иногда невозможно выполнение таких простых действий, как приседание,
повороты, хлопанье в ладоши
Идеаторная апраксия. Больной не может выполнять действия по заданию
с реальными и воображаемыми предметами (например, показать, как
причесываются, размешивают сахар в стакане и т. д.), в то же время
действия по подражанию сохранены. Иногда больной может
автоматически
выполнять
определенные
действия.
Например,
целенаправленно не может застегнуть пуговицу
Конструктивная апраксия. Больной может выполнять различные
действия по подражанию и по устному приказу, но оказывается не в
состоянии создать качественно новый двигательный акт, сложить целое из
частей, (составить из спичек определенную фигуру, сложить пирамиду)
.
Для исследования
праксиса предлагают ряд заданий (присесть, погрозить
пальцем, причесаться и т. д.). Предъявляют также задания на действия с
воображаемыми предметами (просят показать, как едят, как звонят по
телефону, как пилят дрова и т. д.).

Речь и ее нарушения

Речь - важнейшая функция человека, поэтому в ее осуществлении принимают
участие корковые речевые зоны, расположенные в доминантном полушарии (центры
Брока и Вернике), двигательные, кинетические, слуховые и зрительные области, а
также проводящие афферентные и эфферентные пути, относящиеся к пирамидной и
экстрапирамидной системам, анализаторам чувствительности, слуха, зрения,
бульбарные отделы мозга (зрительный, глазодвигательный, лицевой, слуховой,
языкоглоточный, блуждающий и подъязычные нервы). Речевые механизмы имеют
сложную и многоступенчатую организацию
При нарушении иннервации речевого аппарата возникает дизартрия - нарушение
артикуляций, которая может быть обусловлена центральным или периферическим
параличом речедвигательного аппарата, поражением мозжечка, стриопаллидарной
системы.
Дислалия - фонетически неправильное произношение отдельных звуков, может
носить функциональный характер и при логопедических занятиях довольно успешно
устраняется
Под алалией понимают задержку речевого развития. Обычно к 1,5 годам ребенок
начинает говорить, но иногда это происходит значительно позже, хотя ребенок хорошо
понимает обращенную
к нему речь. Задержка речевого развития влияет и на
.
психическое развитие, поскольку речь - важнейшее средство информации для ребенка
Под мутизмом понимается немота, которая возникла у больного, владеющего речью. В детском
возрасте встречается реактивный мутизм как невротическое проявление

Речь и ее нарушения

Афазия:
экспрессивную (моторную) афазия Корковое нарушение моторной речи
является речевой апраксией.
импрессивную (сенсорную) афазия. Корковое нарушение сенсорной речи
- речевой агнозией.
.

Речь и ее нарушения
Сенсорная афазия (афазия Вернике), или словесная «глухота», возникает
при поражении левой височной области (средние и задние отделы верхней
височной извилины)
(логорея) с большим количеством парафазии (искажение, неточное
употребление слов) и с персеверациями, когда больной на различные по смыслу
вопросы отвечает одним и тем же словом. Тот же характер носит нарушение
понимания письменной речи (алексия). Больной не в состоянии читать.
.

Речь и ее нарушения

Встречаются особые формы моторной афазии, когда нарушена только устная речь (чистая
моторная афазия) при полной сохранности письменной речи или когда нарушены произвольная
речь и письмо, а повторение и списывание сохранены. Тотальная афазия возникает при
обширных повреждениях доминантного полушария головного мозга. Больной лишается
способности употреблять и понимать слова в связи с поражением как сенсорного, так и
моторного центра речи.
Амнестическая афазия. Развивается при поражении задне-височных и передне-теменных
отделов мозга. Забываются наименования предметов и явлений. Может встречаться у здоровых
людей. Подсказка помогает экфории (воспроизведению) целого слова.
.

Мужчины
Г.м. составляет 1/38 веса тела
Дендриты менее разветвленные
Женщины
Пространственная ориентация
связана с функцией лобной доли
правого полушария
Мозолистое тело более
асимметрично
У мужчин средний интеллект
встречается реже. Но зато больше
одаренных и умственно отсталых
Мальчики больше интересуются
вещами (Ильин Е.П.)
При решении любых задач
включаются не только лобные доли,
но и зоны, обрабатывающие
зрительную информацию
Г.м. составляет 1/35 веса тела
Дендриты в ряде областей г.м. более
разветвленные
За пространственную ориентацию
отвечают оба полушария г.м.
Мозолистое тело менее
асимметрично, чем у мужчин
Женщины в своей массе имеют
средний уровень интеллекта
Девочки больше интересуются
отношениями
Решение любых задач
осуществляется лобными долями
(отвечают не только за логику, но и
за интуицию)
Функция левой лобной доли может
дублироваться правой стороной
(облегчает восстановление речи
после инсульта)

Головной мозг мужчины и женщины

Мужчины
Вн/утробное развитие совершается
быстрее
Мальчики к 3 годам проявляют
больше страха, чем девочки
(разлученные с мамой)
Мальчики стараются уйти из-под
контроля взрослых
Мальчики во время пребывания в
д/саду постоянно перемещаются,
бросают предметы и игрушки.
Контакты спорадические, лишенные
всякой знаковости
В дошкольном периоде быстрее
переключаются с 1 вида
деятельности на другой
Для контактов характерна высокая
частота агрессии, реже – угроза,
появление страха + высокий
интерес к предметам
Женщины
Девочки к 3 годам более
общительны, примерно на год
раньше начинают шутить
Девочки чаще принимают не свою
стратегию
Девочки заняты прежде всего
наблюдениями, взгляд
перемещается с воспитательницы
на детей, а с них на предметы и на
воспитательницу
В дошкольный период медленнее и
труднее переключаются с одного
вида деятельности на другой
В начальной школе проявляют
более развитые психомоторные
навыки и самоконтроль, лучше
владеют ситуацией, сильнее
зависят от нее. Стремление к
коммуникации

Головной мозг мужчины и женщины

Мальчики -подростки способны
удерживать внимание на одном предмете
в среднем 5 минут
Быть смешным для мальчика не позорно,
а почетно. Именно этим они привлекают к
себе внимание
На 15-20% больше серого вещ-ва, чем у
женщин
Быстрее развивается (обычно к 6 годам)
правая сторона г.м. Это обеспечивает
лучшее пространственное и логическое
мышление, лучшее восприятие
Более развито абстрактное
«несловесное», отвлеченное мышление
Выявлена большая латерализованность
мозга мужчин
Головной мозг на 10-15% тяжелее
женского. Наибольшая масса отмечена в
20-30 лет
Девочки-подростки способны удерживать
внимание на одном предмете в среднем 20
минут
Если девочка выглядит смешной, то ей не до
смеха
Быстрее развивается левая сторона г.м.,
поэтому девочки раньше начинают говорить,
читать. В возрасте 5-10 лет опережают по
интеллектуальным способностям мальчиков.
Быстрее овладевают иностранными языками
Более развито предметное, конкретное,
основанное на речевых способностях
(вербальное) мышление
Полушария более симметричны, что
констатируется к 13 годам. Это упрощает
взаимодействие между ними
Абсолютный вес примерно на 10% меньше,
чем у мужчин. Наибольшая масса г.м.
отмечена до 20 лет

Головной мозг мужчины и женщины

Мужчины
Более развито абстрактное
мышление
Женщины
Более развито конкретное
мышление
В сутки произносят 2-4 тыс.
слов+1,5 тыс.
междометий+3.тыс жестов. В
сумме -6-8 тыс ед.
информационного обмена
Словарный запас почти в 2
раза меньше, чем у женщин
Обладают большими
способностями в словесном
выражении своих чувств
8 тыс. слов+ 2 тыс.
междометий+ 10 тыс жестов и
мимических сигналов. В сумме
-20 тыс.ед. инф. обмена
Владеет приблизительно 23
тыс слов