Каноническая поверхность. Основные поверхности пространства и их построение. Уравнение плоскости в отрезках

Конической поверхностью называется поверхность, образованная прямыми - образующими конуса, - проходящими через данную точку - вершину конуса - и пересекающими данную линию - направляющую конуса. Пусть направляющая конуса имеет уравнения

а вершина конуса имеет координаты Канонические уравнения образующих конуса как прямых, проходящих через точку ) и через точку направляющей, будут;

Исключая х, у и z из четырех уравнений (3) и (4), получим искомое уравнение конической поверхности. Это уравнение обладает весьма простым свойством: оно однородно (т. е. все его члены одного измерения) относительно разностей . В самом деле, допустим сперва, что вершина конуса находится в начале координат . Пусть X, У и Z - координаты любой точки конуса; они удовлетворяют, следовательно, уравнению конуса. После замены в уравнении конуса X, У и Z соответственно через XX, ХУ, XZ, где X - произвольный множитель, уравнение должно удовлетворяться, так как XX, ХУ и XZ суть координаты точки прямой, проходящей через начало координат в точку , т. е. образующей конуса. Следовательно, уравнение конуса не изменится, если все текущие координаты умножим на одно и то число X. Отсюда следует, что это уравнение должно быть однородным относительно текущих координат.

В случае, если вершина конуса лежит в точке мы перенесем начало координат в вершину, и по доказанному преобразованное уравнение конуса будет однородно относительно ноных координат, т. е. относительно

Пример. Составить уравнение конуса с вершиной в начале координат и направляющей

Канонические уравнения образующих, проходящих через вершину (0, 0, С) конуса и точку направляющей, будут:

Исключим х, у и из четырех данных уравнений. Заменяя через с, определим и у из последних двух уравнений.

С поверхностями 2-го порядка студент чаще всего встречается на первом курсе. Сначала задачи на эту тему могут казаться простыми, но, по мере изучения высшей математики и углубления в научную сторону, можно окончательно перестать ориентироваться в происходящем. Для того чтобы такого не произошло, надо не просто заучить, а понять, как получается та или иная поверхность, как изменение коэффициентов влияет на нее и ее расположение относительно изначальной системы координат и как найти новую систему (такую, в которой ее центр совпадает с началом координат, а параллельна одной из координатных осей). Начнем с самого начала.

Определение

Поверхностью 2 порядка называется ГМТ, координаты которого удовлетворяют общему уравнению следующего вида:

Ясно, что каждая точка, принадлежащая поверхности, должна иметь три координаты в каком-либо обозначенном базисе. Хотя в некоторых случаях геометрическое место точек может вырождаться, например, в плоскость. Это лишь значит, что одна из координат постоянна и равна нулю во всей области допустимых значений.

Полная расписанная форма упомянутого выше равенства выглядит так:

A 11 x 2 +A 22 y 2 +A 33 z 2 +2A 12 xy+2A 23 yz+2A 13 xz+2A 14 x+2A 24 y+2A 34 z+A 44 =0.

A nm - некоторые константы, x, y, z - переменные, отвечающие аффинным координатам какой-либо точки. При этом хотя бы один из множителей-констант должен быть не равен нулю, то есть не любая точка будет отвечать уравнению.

В подавляющем большинстве примеров многие числовые множители все же тождественно равняются нулю, и уравнение значительно упрощается. На практике определение принадлежности точки к поверхности не затруднено (достаточно подставить ее координаты в уравнение и проверить, соблюдается ли тождество). Ключевым моментом в такой работе является приведение последней к каноническому виду.

Написанное выше уравнение задает любые (все указанные далее) поверхности 2 порядка. Примеры рассмотрим далее.

Виды поверхностей 2 порядка

Уравнения поверхностей 2 порядка различаются только значениями коэффициентов A nm . Из общего вида при определенных значениях констант могут получиться различные поверхности, классифицируемые следующим образом:

  1. Цилиндры.
  2. Эллиптический тип.
  3. Гиперболический тип.
  4. Конический тип.
  5. Параболический тип.
  6. Плоскости.

У каждого из перечисленных видов есть естественная и мнимая форма: в мнимой форме геометрическое место вещественных точек либо вырождается в более простую фигуру, либо отсутствует вовсе.

Цилиндры

Это самый простой тип, так как относительно сложная кривая лежит только в основании, выступая в качестве направляющей. Образующими являются прямые, перпендикулярные плоскости, в которой лежит основание.

На графике показан круговой цилиндр - частный случай эллиптического цилиндра. В плоскости XY его проекция будет эллипсом (в нашем случае - кругом) - направляющей, а в XZ - прямоугольником - так как образующие параллельны оси Z. Чтобы получить его из общего уравнения, необходимо придать коэффициентам следующие значения:

Вместо привычных обозначений икс, игрек, зет использованы иксы с порядковым номером - это не имеет никакого значения.

По сути, 1/a 2 и другие указанные здесь постоянные являются теми самыми коэффициентами, указанными в общем уравнении, но принято записывать их именно в таком виде - это и есть каноническое представление. Далее будет использоваться исключительно такая запись.

Так задается гиперболический цилиндр. Схема та же - направляющей будет гипербола.

Параболический цилиндр задается несколько иначе: его канонический вид включает в себя коэффициент p, называемый параметром. На самом деле, коэффициент равен q=2p, но принято разделять его на представленные два множителя.

Есть еще один вид цилиндров: мнимые. Такому цилиндру не принадлежит ни одна вещественная точка. Его описывает уравнение эллиптического цилиндра, но вместо единицы стоит -1.

Эллиптический тип

Эллипсоид может быть растянут вдоль одной из осей (вдоль которой именно зависит от значений постоянных a, b, c, указанных выше; очевидно, что большей оси будет соответствовать больший коэффициент).

Также существует и мнимый эллипсоид - при условии, что сумма координат, помноженная на коэффициенты, равна -1:

Гиперболоиды

При появлении минуса в одной из констант уравнение эллипсоида превращается в уравнение однополостного гиперболоида. Надо понимать, что этот минус не обязательно должен располагаться перед координатой x 3 ! Он лишь определяет, какая из осей будет осью вращения гиперболоида (или параллельна ей, так как при появлении дополнительных слагаемых в квадрате (например, (x-2) 2) смещается центр фигуры, как следствие, поверхность перемещается параллельно осям координат). Это относится ко всем поверхностям 2 порядка.

Кроме этого, надо понимать, что уравнения представлены в каноническом виде и они могут быть изменены с помощью варьирования констант (с сохранением знака!); при этом их вид (гиперболоид, конус и так далее) останется тем же.

Такое уравнение задает уже двуполостный гиперболоид.

Коническая поверхность

В уравнении конуса единица отсутствует - равенство нулю.

Конусом называется только ограниченная коническая поверхность. На картинке ниже видно, что, по сути, на графике окажется два так называемых конуса.

Важное замечание: во всех рассматриваемых канонических уравнениях константы по умолчанию принимаются положительными. В ином случае знак может повлиять на итоговый график.

Координатные плоскости становятся плоскостями симметрии конуса, центр симметрии располагается в начале координат.

В уравнении мнимого конуса стоят только плюсы; ему принадлежит одна единственная вещественная точка.

Параболоиды

Поверхности 2 порядка в пространстве могут принимать различные формы даже при схожих уравнениях. К примеру, параболоиды бывают двух видов.

x 2 /a 2 +y 2 /b 2 =2z

Эллиптический параболоид, при расположении оси Z перпендикулярно чертежу, будет проецироваться в эллипс.

x 2 /a 2 -y 2 /b 2 =2z

Гиперболический параболоид: в сечениях плоскостями, параллельными ZY, будут получаться параболы, а в сечениях плоскостями, параллельными XY - гиперболы.

Пересекающиеся плоскости

Есть случаи, когда поверхности 2-ого порядка вырождаются в плоскости. Эти плоскости могут располагаться различными способами.

Сначала рассмотрим пересекающиеся плоскости:

x 2 /a 2 -y 2 /b 2 =0

При такой модификации канонического уравнения получаются просто две пересекающиеся плоскости (мнимые!); все вещественные точки находятся на оси той координаты, которая отсутствует в уравнении (в каноническом - оси Z).

Параллельные плоскости

При наличии только одной координаты поверхности 2-го порядка вырождаются в пару параллельных плоскостей. Не забывайте, на месте игрека может стоять любая другая переменная; тогда будут получаться плоскости, параллельные другим осям.

В этом случае они становятся мнимыми.

Совпадающие плоскости

При таком простом уравнении пара плоскостей вырождается в одну - они совпадают.

Не забывайте, что в случае трехмерного базиса представленное выше уравнение не задает прямую y=0! В нем отсутствуют две другие переменные, но это всего лишь значит, что их значение постоянно и равно нулю.

Построение

Одной из самых сложных задач для студента является именно построение поверхностей 2 порядка. Еще более затруднительно переходить от одной системы координат к другой, учитывая углы наклона кривой относительно осей и смещение центра. Давайте повторим, как последовательно определить будущий вид чертежа аналитическим способом.

Чтобы построить поверхность 2 порядка, необходимо:

  • привести уравнение к каноническому виду;
  • определить вид исследуемой поверхности;
  • построить, опираясь на значения коэффициентов.

Ниже представлены все рассмотренные виды:

Для закрепления подробно распишем один пример такого типа задания.

Примеры

Допустим, имеется уравнение:

3(x 2 -2x+1)+6y 2 +2z 2 +60y+144=0

Приведем его к каноническому виду. Выделим полные квадраты, то есть скомпонуем имеющиеся слагаемые таким образом, чтобы они были разложением квадрата суммы или разности. Например: если (a+1) 2 =a 2 +2a+1, то a 2 +2a+1=(a+1) 2 . Мы будем проводить вторую операцию. Скобки в данном случае раскрывать не обязательно, так как это только усложнит вычисления, а вот вынести общий множитель 6 (в скобке с полным квадратом игрека) необходимо:

3(x-1) 2 +6(y+5) 2 +2z 2 =6

Переменная зэт встречается в этом случае только один раз - ее можно пока не трогать.

Анализируем уравнение на данном этапе: перед всеми неизвестными стоит знак «плюс»; при делении на шесть остается единица. Следовательно, перед нами уравнение, задающее эллипсоид.

Заметьте, что 144 было разложено на 150-6, после чего -6 перенесли вправо. Почему надо было сделать именно так? Очевидно, что самый большой делитель в данном примере -6, следовательно, чтобы после деления на него справа осталась единица, необходимо «отложить» от 144 именно 6 (о том, что справа должна оказаться единица, говорит наличие свободного члена - константы, не помноженной на неизвестную).

Поделим все на шесть и получим каноническое уравнение эллипсоида:

(x-1) 2 /2+(y+5) 2 /1+z 2 /3=1

В использованной ранее классификации поверхностей 2 порядка рассматривается частный случай, когда центр фигуры находится в начале координат. В данном примере он смещен.

Полагаем, что каждая скобка с неизвестными - это новая переменная. То есть: a=x-1, b=y+5, c=z. В новых координатах центр эллипсоида совпадает с точкой (0,0,0), следовательно, a=b=c=0, откуда: x=1, y=-5, z=0. В изначальных координатах центр фигуры лежит в точке (1,-5,0).

Эллипсоид будет получаться из двух эллипсов: первого в плоскости XY и второго в плоскости XZ (или YZ - это не имеет значения). Коэффициенты, на которые делятся переменные, стоят в каноническом уравнении в квадрате. Следовательно, в приведенном примере правильнее было бы делить на корень из двух, единицу и корень из трех.

Меньшая ось первого эллипса, параллельная оси Y, равняется двум. Большая ось, параллельная оси X - двум корням из двух. Меньшая ось второго эллипса, параллельная оси Y, остается той же - она равна двум. А большая ось, параллельная оси Z, равняется двум корням из трех.

С помощью полученных из первоначального уравнения путем преобразования к каноническому виду данных мы можем начертить эллипсоид.

Подводя итоги

Освещенная в этой статье тема довольно обширная, но, на самом деле, как вы можете теперь видеть, не очень сложная. Ее освоение, по сути, заканчивается на том моменте, когда вы заучиваете названия и уравнения поверхностей (и, конечно, как они выглядят). В примере выше мы подробно рассматривали каждый шаг, но приведение уравнения к каноническому виду требует минимальных познаний в высшей математике и не должно вызывать никаких затруднений у студента.

Анализ будущего графика по имеющемуся равенству уже более сложная задача. Но для ее удачного решения достаточно понимать, как строятся соответствующие кривые второго порядка - эллипсы, параболы и прочие.

Случаи вырождения - еще более простой раздел. Из-за отсутствия некоторых переменных упрощаются не только вычисления, как уже было сказано ранее, но и само построение.

Как только вы сможете уверенно назвать все виды поверхностей, варьировать постоянные, превращая график в ту или иную фигуру - тема будет освоена.

Успехов в обучении!

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

Определение 1. Конической поверхностью или конусом с вершиной в точке М 0 называется поверхность, образованная всеми прямыми, каждая из которых проходит через точку М 0 и через некоторую точку линии γ. Точка М 0 называется вершиной конуса, линия γ – направляющей. Прямые, проходящие через вершину конуса и лежащие на нем, называются образующими конуса.

Теорема. Поверхностью 2-го порядка с каноническим уравнением

является конусом с вершиной в начале координат, направляющей которой служит эллипс

Доказательство.

Пусть M 1 (x 1 ; y 1 ; z 1) – некоторая точка поверхности α, отличная от начала координат; ?=ОM 1 – прямая, M (x; y; z) принадлежит?. Так как | | , то, такое что

Так как, то ее координаты x 1 ; y 1 ; z 1 удовлетворяют уравнению (1). Учитывая условия (3) имеем, где t ≠ 0. Разделив обе части уравнения на t 2 ≠ 0, получим, что координаты произвольной точки M (x; y; z) прямой m=ОM 1 удовлетворяют уравнению (1). Ему также удовлетворяют и координаты точки О(0,0,0).

Таким образом, любая точка M (x; y; z) прямой m=ОM 1 лежит на поверхности α с уравнением (1), то есть прямая ОM 1 =m – прямолинейная образующая поверхности α.

Рассмотрим теперь сечение поверхности α плоскостью, параллельной плоскости Oxy с уравнением z = c ≠ 0:

Это сечение является эллипсом с полуосями а и b . Следовательно, она пересекает этот эллипс. Согласно определению 1 поверхность α является конусом с вершиной О (0,0,0) (Все прямые m проходят через начало координат); образующие этого конуса есть прямые m, направляющая – указанный выше эллипс.

Теорема доказана.

Определение 2. Поверхность 2-го порядка с каноническим уравнением (1) называется конусом второго порядка.

Свойства конуса 2-го порядка .

Конус с уравнением (1) симметричен относительно всех координатных плоскостей, всех координатных осей и начала координат (так как все переменные содержатся в уравнении (1) во второй степени).

Все координатные оси имеют с конусом (1) единственную общую точку – начало координат, которая служит его вершиной и центром одновременно

Сечение конуса (1) плоскостями Oxz и Oyz – пары пересекающихся в начале координат прямых; плоскостью Oxy – точка О (0,0,0).

Сечения конуса (1) плоскостями, параллельными координатным плоскостям, но не совпадающими с ними, являются либо эллипсами, либо гиперболами.

Если а = b , то эти эллипсы являются окружностями, а сам конус – поверхностью вращения. Он называется в этом случае круговым конусом.

Определение 3 : коническим сечением называется линия по которой пересекается круговой конус с произвольной плоскостью не проходящей через его вершину. Таким образом, каноническими сечениями является эллипс, гипербола и парабола.

Основные теоретические сведения

Цилиндрической поверхностью или просто цилиндром называется всякая поверхность, которую можно получить движением прямой, перемещающийся параллельно некоторому вектору и все время пересекающей данную линию, которая носит название направляющей. Движущаяся прямая называется образующей.

Конической поверхностью или просто конусом называется поверхность, образованная движением прямой, проходящей через данную точку, называемую вершиной конуса, и скользящей по данной кривой. Движущаяся прямая называется образующей конуса, а кривая, по которой скользит образующая, - направляющей.

Вращением фигуры вокруг данной прямой (оси вращения)называется такое движение, при котором каждая точка фигуры
описывает окружность с центром на оси вращения, лежащую в плоскости, перпендикулярной к оси вращения.

Поверхность, образованная вращением линии вокруг оси, называется поверхностью вращения.

Канонические уравнения поверхностей второго порядка

Поверхность второго порядка задается в прямоугольных координатах уравнением второй степени

(7.1)

Путем преобразования координат (поворотом осей и параллельным переносом) уравнение (7.1) приводится к каноническому виду. В случае, когда в уравнении (7.1) отсутствуют члены с произведением координат , это уравнение выделением полных квадратов по,,и параллельным переносом осей координат приводится к каноническому виду подобно тому, как это делалось для линий второго порядка (см. Исследование общего уравнение линии второго порядка). Поверхности второго порядка и их канонические уравнения представлены в табл. 3.

Форму и расположение поверхностей второго порядка обычно изучают методом параллельных сечений. Сущность метода заключается в том, что поверхность пересекается несколькими плоскостями, параллельными координатным плоскостям. Форма и параметры полученных сечений позволяют выяснить форму самой поверхности.

Таблица 3

Гиперболоид:

однополостный,

двуполостный,

Параболоид:

эллиптический,

гиперболический,

эллиптический,

гиперболический,

параболический,

Примеры решения задач

Задача 7.1. Составить уравнение сферы, радиус которой , а центр находится в точке
.

Решение. Сфера – это множество точек, отстоящих от центра на одном и том же расстоянии. Следовательно, обозначив через
координаты произвольной точки
сферы и выразив через них равенство
, будем иметь

Возведя обе части равенства в квадрат, получим искомое каноническое уравнение сферы:

Если центр сферы поместить в начало координат, то уравнение сферы имеет более простой вид:

.

Ответ.
.

Задача 7.2. Составить уравнение конической поверхности с вершиной в начале координат и направляющей

(7.1)

Решение. Канонические уравнения образующих через точку
и точку
направляющей, имеет вид

(7.2)

Исключим ,,из уравнений (7.1) и (7.2). Для этого в уравнениях (7.2) заменимнаи определими:

;

Подставив эти значения ив первое уравнение системы (7.1), будем иметь:

или

Полученное уравнение определяет конус второго порядка (см. табл. 3)

Задача 7.3.

Решение. Эта поверхность есть гиперболический цилиндр с образующими, параллельными оси
Действительно, данное уравнение не содержит, а направляющая цилиндра есть гипербола

с центром симметрии в точке
и действительной осью, параллельной оси
.

Задача 7.4. Исследовать и построить поверхность, заданную уравнением

Решение. Пересечем поверхность плоскостью
. В результате имеем

откуда
. Это уравнение параболы в плоскости

Сечение заданной поверхности плоскостью
есть парабола

Сечение плоскостью
есть пара пересекающихся прямых:

Сечение плоскостями, параллельными плоскости
, есть гиперболы:

При
действительная ось гиперболы параллельна оси
, при
оси
. Исследуемая поверхность является гиперболическим параболоидом (по ассоциации с формой, поверхность получила название "седло").

Замечание. Интересным свойством гиперболического параболоида является наличие прямых линий, лежащих всеми своими точками на его поверхности. Такие прямые называются прямолинейными образующими гиперболического параболоида. Через каждую точку гиперболического параболоида проходят две прямолинейные образующие.

Задача 7.5. Какую поверхность определяет уравнение

Решение. Чтобы привести данное уравнение к каноническому виду, выделим полные квадраты переменных ,,:

Сравнивая полученное уравнение с табличными (см. табл. 3), видим, что это уравнение однополостного гиперболоида, центр которого смещен в точку
Путем параллельного переноса системы координат по формулам

приведем уравнение к каноническому виду:

Замечание. Однополостный гиперболоид, как и гиперболический, имеет два семейства прямолинейных образующих.