Математическое ожидание – это распределение вероятностей случайной величины. Вероятность и статистика – основные факты Что называется математическим ожиданием случайной величины

Математическое ожидание - это, определение

Мат ожидание - это одно из важнейших понятий в математической статистике и теории вероятностей, характеризующее распределение значений или вероятностей случайной величины. Обычно выражается как средневзвешенное значение всех возможных параметров случайной величины. Широко применяется при проведении технического анализа, исследовании числовых рядов, изучении непрерывных и продолжительных процессов. Имеет важное значение при оценке рисков, прогнозировании ценовых показателей при торговле на финансовых рынках, используется при разработке стратегий и методов игровой тактики в теории азартных игр .

Мат ожидание - это среднее значение случайной величины, распределение вероятностей случайной величины рассматривается в теории вероятностей.

Мат ожидание - это мера среднего значения случайной величины в теории вероятности. Мат ожидание случайной величины x обозначается M(x) .

Математическое ожидание (Population mean) - это

Мат ожидание - это

Мат ожидание - это в теории вероятности средневзвешенная величина всех возможных значений, которые может принимать эта случайная величина.

Мат ожидание - это сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Математическое ожидание (Population mean) - это

Мат ожидание - это средняя выгода от того или иного решения при условии, что подобное решение может быть рассмотрено в рамках теории больших чисел и длительной дистанции.

Мат ожидание - это в теории азартных игр сумма выигрыша, которую может заработать или проиграть спекулянт, в среднем, по каждой ставке. На языке азартных спекулянтов это иногда называется «преимуществом спекулянта » (если оно положительно для спекулянта) или «преимуществом казино» (если оно отрицательно для спекулянта).

Математическое ожидание (Population mean) - это


Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

2. Основы теории вероятностей

Математическое ожидание

Рассмотрим случайную величину с числовыми значениями. Часто оказывается полезным связать с этой функцией число – ее «среднее значение» или, как говорят, «среднюю величину», «показатель центральной тенденции». По ряду причин, некоторые из которых будут ясны из дальнейшего, в качестве «среднего значения» обычно используют математическое ожидание.

Определение 3. Математическим ожиданием случайной величины Х называется число

т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям соответствующих элементарных событий.

Пример 6. Вычислим математическое ожидание числа, выпавшего на верхней грани игрального кубика. Непосредственно из определения 3 следует, что

Утверждение 2. Пусть случайная величина Х принимает значения х 1 , х 2 ,…, х m . Тогда справедливо равенство

(5)

т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям того, что случайная величина принимает определенные значения.

В отличие от (4), где суммирование проводится непосредственно по элементарным событиям, случайное событие может состоять из нескольких элементарных событий.

Иногда соотношение (5) принимают как определение математического ожидания. Однако с помощью определения 3, как показано далее, более легко установить свойства математического ожидания, нужные для построения вероятностных моделей реальных явлений, чем с помощью соотношения (5).

Для доказательства соотношения (5) сгруппируем в (4) члены с одинаковыми значениями случайной величины :

Поскольку постоянный множитель можно вынести за знак суммы, то

По определению вероятности события

С помощью двух последних соотношений получаем требуемое:

Понятие математического ожидания в вероятностно-статистической теории соответствует понятию центра тяжести в механике. Поместим в точки х 1 , х 2 ,…, х m на числовой оси массы P (X = x 1 ), P (X = x 2 ),…, P (X = x m ) соответственно. Тогда равенство (5) показывает, что центр тяжести этой системы материальных точек совпадает с математическим ожиданием, что показывает естественность определения 3.

Утверждение 3. Пусть Х – случайная величина, М(Х) – ее математическое ожидание, а – некоторое число. Тогда

1) М(а)=а; 2) М(Х-М(Х))=0; 3) М[(X - a ) 2 ]= M [(X - M (X )) 2 ]+(a - M (X )) 2 .

Для доказательства рассмотрим сначала случайную величину, являющуюся постоянной, т.е. функция отображает пространство элементарных событий в единственную точку а . Поскольку постоянный множитель можно выносить за знак суммы, то

Если каждый член суммы разбивается на два слагаемых, то и вся сумма разбивается на две суммы, из которых первая составлена из первых слагаемых, а вторая – из вторых. Следовательно, математическое ожидание суммы двух случайных величин Х+У , определенных на одном и том же пространстве элементарных событий, равно сумме математических ожиданий М(Х) и М(У) этих случайных величин:

М(Х+У) = М(Х) + М(У).

А потому М(Х-М(Х)) = М(Х) - М(М(Х)). Как показано выше, М(М(Х)) = М(Х). Следовательно, М(Х-М(Х)) = М(Х) - М(Х) = 0.

Поскольку (Х - а) 2 = {(X M (X )) + (M (X ) - a )} 2 = (X - M (X )) 2 + 2(X - M (X ))(M (X ) - a ) + (M (X ) – a ) 2 , то M [(Х - а) 2 ] = M (X - M (X )) 2 + M {2(X - M (X ))(M (X ) - a )} + M [(M (X ) – a ) 2 ]. Упростим последнее равенство. Как показано в начале доказательства утверждения 3, математическое ожидание константы – сама эта константа, а потому M [(M (X ) – a ) 2 ] = (M (X ) – a ) 2 . Поскольку постоянный множитель можно выносить за знак суммы, то M {2(X - M (X ))(M (X ) - a )} = 2(M (X ) - a )М(X - M (X )). Правая часть последнего равенства равна 0, поскольку, как показано выше, М(Х-М(Х))=0. Следовательно, М[(X - a ) 2 ]= M [(X - M (X )) 2 ]+(a - M (X )) 2 , что и требовалось доказать.

Из сказанного вытекает, что М[(X - a ) 2 ] достигает минимума по а , равного M [(X - M (X )) 2 ], при а = М(Х), поскольку второе слагаемое в равенстве 3) всегда неотрицательно и равно 0 только при указанном значении а .

Утверждение 4. Пусть случайная величина Х принимает значения х 1 , х 2 ,…, х m , а f – некоторая функция числового аргумента. Тогда

Для доказательства сгруппируем в правой части равенства (4), определяющего математическое ожидание, члены с одинаковыми значениями :

Пользуясь тем, что постоянный множитель можно выносить за знак суммы, и определением вероятности случайного события (2), получаем

что и требовалось доказать.

Утверждение 5. Пусть Х и У – случайные величины, определенные на одном и том же пространстве элементарных событий, а и b – некоторые числа. Тогда M (aX + bY )= aM (X )+ bM (Y ).

С помощью определения математического ожидания и свойств символа суммирования получаем цепочку равенств:

Требуемое доказано.

Выше показано, как зависит математическое ожидание от перехода к другому началу отсчета и к другой единице измерения (переход Y =aX +b ), а также к функциям от случайных величин. Полученные результаты постоянно используются в технико-экономическом анализе, при оценке финансово-хозяйственной деятельности предприятия, при переходе от одной валюты к другой во внешнеэкономических расчетах, в нормативно-технической документации и др. Рассматриваемые результаты позволяют применять одни и те же расчетные формулы при различных параметрах масштаба и сдвига.

Предыдущая

Глава 6.

Числовые характеристики случайных величин

Математическое ожидание и его свойства

Для решения многих практических задач не всегда требуется знание всех возможных значений случайной величины и их вероятностей. Более того, иногда закон распределения исследуемой случайной величины просто неизвестен. Однако требуется выделить какие-то особенности этой случайной величины, иначе говоря, числовые характеристики.

Числовые характеристики – это некоторые числа, характеризующие те или иные свойства, отличительные признаки случайной величины.

Например, среднее значение случайной величины, средний разброс всех значений случайной величины вокруг своего среднего и т.д. Главное назначение числовых характеристик состоит в том, чтобы в сжатой форме выразить наиболее важные особенности распределения исследуемой случайной величины. Числовые характеристики в теории вероятностей играют огромную роль. Они помогают решать, даже без знания законов распределения, очень многие важные практические задачи.

Среди всех числовых характеристик, в первую очередь выделим характеристики положения. Это характеристики, которые фиксируют положение случайной величины на числовой оси, т.е. некое среднее значение, около которого группируются остальные значения случайной величины.

Из характеристик положения наибольшую роль в теории вероятностей играет математическое ожидание.

Математическое ожидание иногда называют просто средним значением случайной величины. Оно является неким центром распределения.

Математическое ожидание дискретной случайной величины

Рассмотрим понятие математического ожидания вначале для дискретной случайной величины.

Прежде чем вводить формальное определение, решим следующую простую задачу.

Пример 6.1. Пусть некий стрелок производит 100 выстрелов по мишени. В результате получена следующая картина: 50 выстрелов – попадание в "восьмерку", 20 выстрелов – попадание в "девятку" и 30 – в "десятку". Какова средняя сумма очков при одном выстреле.

Решение данной задачи очевидно и сводится к нахождению среднего значения 100 чисел, а именно, очков.

Преобразуем дробь, почленно поделив числитель на знаменатель, и представим среднее значение в виде следующей формулы:

Предположим теперь, что число очков при одном выстреле – это значения некоторой дискретной случайной величины Х . Из условия задачи ясно, что х 1 =8; х 2 =9; х 3 =10. Известны относительные частоты появления этих значений, которые, как известно, при большом числе испытаний приближенно равны вероятностям соответствующих значений, т.е. р 1 ≈0,5; р 2 ≈0,2; р 3 ≈0,3. Итак, . Величина в правой части – это математическое ожидание дискретной случайной величины.

Математическим ожиданием дискретной случайной величины Х называется сумма произведений всех ее возможных значений на вероятности этих значений.

Пусть дискретная случайная величина Х задана своим рядом распределения:

Х х 1 х 2 х n
Р р 1 р 2 р n

Тогда математическое ожидание М (Х ) дискретной случайной величины определяется по следующей формуле:

Если дискретная случайная величина принимает бесконечное счетное множество значений, то математическое ожидание выражается формулой:

,

причем математическое ожидание существует, если ряд в правой части равенства абсолютно сходится.

Пример 6.2 . Найти математическое ожидание выигрыша Х в условиях примера 5.1.

Решение . Напомним, что ряд распределения Х имеет следующий вид:

Х
Р 0,7 0,2 0,1

Получим М (Х )=0∙0,7+10∙0,2+50∙0,1=7. Очевидно, что 7 рублей – это справедливая цена билета в данной лотерее, без различных затрат, например, связанных с распространением или изготовлением билетов. ■

Пример 6.3 . Пусть случайная величина Х – это число появлений некоторого события А в одном испытании. Вероятность этого события равна р . Найти М (Х ).

Решение. Очевидно, что возможные значения случайной величины: х 1 =0 – событие А не появилось и х 2 =1 – событие А появилось. Ряд распределения имеет вид:

Х
Р 1−р р

Тогда М (Х ) = 0∙(1−р )+1∙р = р . ■

Итак, математическое ожидание числа появлений события в одном испытании равно вероятности этого события.

В начале параграфа была приведена конкретная задача, где указывалась связь между математическим ожиданием и средним значением случайной величины. Поясним это в общем виде.

Пусть произведено k испытаний, в которых случайная величина Х приняла k 1 раз значение х 1 ; k 2 раз значение х 2 и т.д. и, наконец, k n раз значение x n . Очевидно, что k 1 + k 2 +…+ k n = k . Найдем среднее арифметическое всех этих значений, имеем

Заметим, что дробь - это относительная частота появления значения х i в k испытаниях. При большом числе испытаний относительная частота приближенно равна вероятности, т.е. . Отсюда следует, что

.

Таким образом, математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины, причем тем точнее, чем больше число испытаний – в этом состоит вероятностный смысл математического ожидания.

Математическое ожидание иногда называют центром распределения случайной величины, так как, очевидно, что возможные значения случайной величины расположены на числовой оси слева и справа от ее математического ожидания.

Перейдем теперь к понятию математического ожидания для непрерывной случайной величины.