Арены тривиальные названия. Арены. Номенклатура, изомерия. Стабилизация σ-комплекса. Осуществляется путем отщепления от σ-комплекса протона с помощью основания. При этом за счет двух электронов разрывающейся ковалентной связи С – Н восстанавливается замкн

Арены или ароматические (бензоидные) углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные кольца) с замкнутой системой сопряженных связей.

Ароматический характер аренов объясняется электронным строением бензольного кольца.

Критерии ароматичности . На основании изучения циклических сопряженных систем установлено, что соединение ароматично, если оно подчиняется правилу Хюккеля :Повышенной термодинамической стабильностью (ароматичностью) обладают только такие моноциклические сопряженные системы (полиены), которые имеют плоское строение и содержат в замкнутой цепи сопряжения 4n + 2 -электронов (где n – целое число: 0, 1, 2, 3 и т.д). Циклы, содержащие 4n -электронов, антиароматичны (дестабилизированы).

Условиям ароматичности полностью соответствует молекула бензола С 6 Н 6 , в системе сопряжения которой участвуют 6 -электронов – ароматический секстет (по формуле 4n + 2 при n = 1). Ароматические циклы значительно устойчивее сопряженных ациклических аналогов с тем же числом π-электронов, т.е. бензол более стабилен, чем CH 2 =CH–CH=CH–CH=CH 2 (гексатриен-1,3,5).

Номенклатура . Широко используются тривиальные названия (толуол, ксилол, кумол и т.п.). Систематические названия гомологов бензола строят из названия углеводородного радикала (приставка) и слова бензол (корень): С 6 Н 5 СH 3 – метилбензол (толуол), С 6 Н 5 С 2 H 5 – этилбензол, С 6 Н 5 СH(CH 3) 2 – изопропилбензол (кумол). Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которы-ми они связаны. Нумерацию кольца проводят так, чтобы номера радикалов были наименьшими.

Для дизамещенных бензолов RC 6 H 4 R используется также другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: орто- (о-) заместители у соседних атомов углерода кольца, т.е. в положении 1,2-; мета- (м-) заместители через один атом углерода (1,3-); пара- (п-) заместители на противоположных сторонах (1,4-).

Изомерия . В ряду гомологов бензола проявляется структурная изомерия: 1) положения заместителей для ди-, три- и тетра-замещенных бензолов (например, о-, м- и п-ксилолы); 2) углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода (C 6 H 5 -CH 2 CH 2 CH 3 – н-пропилбензол и C 6 H 5 -CH(CH 3) 2 – изопропилбензол или кумол); 3) изомерия заместителей R, начиная с R = С 2 Н 5 , (например, молекуляр-ной формуле С 8 Н 10 соответствуют 4 изомера: о-, м-, п-ксилолы СH 3 С 6 Н 4 СH 3 и этилбензол С 6 Н 5 С 2 H 5); 4) межклассовая изомерия с непредельными соединениями (например, формулу С 6 Н 6 кроме бензола

имеют соединения СН 2 =СН–С≡С–СН=СН 2 , СН≡С–СН=СН–СН=СН 2 и т.п., а также ненасыщенные циклы). Пространственная изомерия относительно бензольного кольца в замещенных аренах отсутствует.

Правило Хюккеля:

Ароматическими являются молекулы, подчиняющиеся правилу Хюккеля: ароматической является плоская моноциклическая сопряженная система, содержащая (4n + 2)π-электронов (где n = 0,1,2…).

Механизм электрофильного замещения :

1-я стадия: образование п-комплекса. В этом случае образуется слабая связь между п-электронным облаком бензольного кольца и электрофильным реагентом с дефицитом электронной плотности при сохранении ароматического секстета. Электрофильный реагент располагается обычно перпендикулярно плоскости кольца вдоль его оси симметрии. Эта стадия протекает быстро и не влияет на скорость реакции. Существование п-комплекса доказывается методом УФ-спетроскопии...

2-я стадия: образование б-комплекса . Эта стадия медленная и практически не обратимая. Образуется ковалентная б-связь между электрофилом и атомом углерода бензольного кольца, при этом атом углерода переходит изspІ в spі-валентное состояние с нарушением ароматического секстета и образованием циклогексадиенильного катиона (иона бензоления). Катион бензоления вместе с противоионом образуют ионное соединение, хорошо проводящее электрический ток. В ионе бензоления все атомы углерода расположены в одной плоскости, а заместители уspі-гибридизованного атома углерода перпендикулярно ей.

3-я и 4-я стадии: образование второго п-комплекса и ароматизация. б-комплекс может превращаться в новый мало устойчивый п-комплекс, который под воздействием основания, обычно противоиона, депротонируется.

Бензол как представитель аренов. Строение молекулы бензола. Сопряжение пи-связей. Изомерия и номенклатура аренов. Гомологи бензола. Получение аренов, их физические свойства

А РЕНЫ (ароматические углеводороды)

      • Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.
Простейшие представители (одноядерные арены):

Многоядерные арены: нафталин С 10 Н 8 , антрацен С 14 Н 10 и др.
Термин "ароматические соединения" возник давно в связи с тем, что некоторые представители этого ряда веществ имеют приятный запах. Однако в настоящее время в понятие "ароматичность" вкладывается совершенно иной смысл.
Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией π-электронов в циклической системе.
Критерии ароматичности аренов:
      1. Атомы углерода в sp 2 -гибридизованном состоянии образуют циклическую систему.
      2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).
      3. Замкнутая система сопряженных связей содержит
      4. 4n+2 π-электронов (n – целое число).

Этим критериям полностью соответствует молекула бензола С 6 Н 6 .

1. Строение бензола

Бензол С 6 Н 6 – родоначальник ароматических углеводородов.

Каждый из шести атомов углерода в его молекуле находится в состоянии sp 2 -гибридизации и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 120°. Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости:

р-Электроны всех атомов углерода взаимодействуют между собой путем бокового перекрывания соседних 2р-АО, расположенных перпендикулярно плоскости σ-скелета бензольного кольца. Они образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между длиной простой связи (0,154 нм) и двойной (0,134 нм). Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы, см.анимацию). Поэтому структурную формулу бензола изображают в виде правильного шестиугольника (σ-скелет) и кружка внутри него, обозначающего делокализованные π-связи:

Формула Кекуле также нередко используется, но при этом учитывается, что она лишь условно передает строение молекулы.



2. Гомологи бензола. Номенклатура и изомерия

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

Общая формула гомологического ряда бензола C n H 2n-6 (n ≥ 6).

Номенклатура . Широко используются тривиальные названия (толуол, ксилол, кумол и т.п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова бензол (корень):

С 6 Н 5 -СН 3 С 6 Н 5 -С 2 Н 5 С 6 Н 5 -С 3 Н 7

Метилбензол (толуол) этилбензол пропилбензол

Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Нумерацию кольца проводят так, чтобы номера радикалов были наименьшими. Например:

Для дизамещенных бензолов R-C 6 H 4 -R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками:

орто - (о -) заместители у соседних атомов углерода кольца, т.е. 1,2-;

мета - (м -) заместители через один атом углерода (1,3-);

пара - (п -) заместители на противоположных сторонах кольца (1,4-).

Ароматические одновалентные радикалы имеют общее название "арил ". Из них наиболее распространены в номенклатуре органических соединений два: C 6 H 5 - (фенил ) и C 6 H 5 CH 2 - (бензил ).

Изомерия (структурная):

1) положения заместителей для ди -, три - и тетра -замещенных бензолов (например, о -, м - и п -ксилолы);

2) углеродного скелета в боковой цепи , содержащей не менее 3-х атомов углерода:

3) изомерия заместителей R, начиная с R - С 2 Н 5 .

Например, молекулярной формуле С 8 Н 10 соответствуют 4 изомера:

три ксилола CH 3 -C 6 H 4 -CH 3 (о-, м-, п- ) и этилбензол C 6 H 5 -C 2 H 5 .

Пространственная изомерия относительно бензольного кольца в алкилбензолах отсутствует.

Получение ароматических углеводородов

Основными природными источниками ароматических углеводородов являются каменный уголь и нефть.

Реакции получения аренов указывают на взаимосвязь между различными группами углеводородов и на возможность их превращения друг в друга.

Способы получения. 1. Получение из алифатических углеводородов. Для получения бензола и его гомологов в промышленности используют ароматизацию предельных углеводородов, входящих в состав нефти. При пропускании алканов с неразветвленной цепью, состоящей не менее чем из шести атомов углерода, над нагретой платиной или оксидом хрома происходит дегидрирование с одновременным замыканием цикла (дегидроциклизация ). При этом из гексана получают бензол, а из гептана - толуол.

2. Дегидрирование циклоалканов также приводит к ароматическим углеводородам; для этого пары циклогексана и его гомологов пропускают над нагретой платиной.

3. Бензол можно получить при тримеризации ацетилена, для чего ацетилен пропускают над активированным углем при 600 °С.

4. Гомологи бензола получают из бензола при его взаимодействии с алкилгалогенидами в присутствии галогенидов алюминия (реакция алкилирования, или реакция Фриделя-Крафтса).

5. При сплавлении солей ароматических кислот со щелочью выделяются арены в газообразном виде.

Химические свойства. Ароматическое ядро, обладающее подвижной системой л-электронов, - удобный объект для атаки электрофильными реагентами. Этому способствует также пространственное расположение л-электронного облака с двух сторон плоского a-скелета молекулы (см. рис. 23.1, б).

Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом S E (от англ, substitution, electrophilic).

Механизм S E можно представить следующим образом:

На первой стадии электрофильная частица X притягивается к л-электронному облаку и образует с ним л-комплекс. Затем два из шести л-электронов кольца образуют a-связь между X и одним из атомов углерода. При этом ароматичность системы нарушается, так как в кольце остается только четыре л-электрона, распределенные между пятью атомами углерода (a-комплекс). Для сохранения ароматичности a-комплекс выбрасывает протон, а два электрона связи С-Н переходят в л-электронную систему.

По механизму электрофильного замещения протекают следующие реакции ароматических углеводородов.

1. Галогенирование. Бензол и его гомологи взаимодействуют с хлором или бромом в присутствии катализаторов - безводных А1С1 3 , FeCl 3 , А1Вг 3 .

По этой реакции из толуола получают смесь орто- и пара-изоме- ров (см. ниже). Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы.

2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии нитрующей смеси (смеси концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко.

3. Сульфирование . Реакция легко проходит с «дымящей» серной кислотой (олеумом).

  • 4. Алкилирование по Фриделю-Крафтсу - см. выше способы получения гомологов бензола.
  • 5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора А1С1 3 . Механизм реакции сходен с механизмом предыдущей реакции.

Все рассмотренные выше реакции протекают по механизму электрофильного замещения S E .

Наряду с реакциями замещения ароматические углеводороды могут вступать в реакции присоединения, однако эти реакции приводят к разрушению ароматической системы и поэтому требуют больших затрат энергии и протекают только в жестких условиях.

6. Гидрирование бензола идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан.

Гомологи бензола при гидрировании дают производные циклогексана.

7. Радикальное галогенирование бензола происходит при взаимодействии его паров с хлором только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт гексахлорциклогек- сан (гексахлоран) С 6 Н 6 С1 6 (атомы водорода в структурных формулах не указаны).

8. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы - реакция требует жестких условий. Например, окисление бензола кислородом воздуха происходит только при сильном нагревании (400 °С) его паров на воздухе в присутствии катализатора V 2 0 5 ; продукты - смесь малеиновой кислоты и ее ангидрида.


Гомологи бензола. Химические свойства гомологов бензола отличны от свойств бензола, что обусловлено взаимным влиянием алкильного радикала и бензольного кольца.

Реакции в боковой цепи. По химическим свойствам алкильные заместители в бензольном кольце подобны алканам. Атомы водорода в них замещаются на галоген по радикальному механизму (S R). Поэтому в отсутствие катализатора при нагревании или УФ облучении идет радикальная реакция замещения в боковой цепи. Однако влияние бензольного кольца на алкильные заместители приводит к тому, что в первую очередь замещается водород у атома углерода, непосредственно связанного с бензольным кольцом (а-атома углерода).

Замещение в бензольном кольце по механизму S E возможно только в присутствии катализатора (А1С1 3 или FeCl 3). Замещение в кольце происходит в орто- и пара-положения к алкильному радикалу.

При действии перманганата калия и других сильных окислителей на гомологи бензола боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением а-атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту.


1. Классификация ароматических углеводородов.

2. Гомологический ряд моноциклических аренов, номенклатура, получение.

3. Изомерия, строение бензола и его гомологов.

4. Свойства аренов.

Аренами называют богатые углеродом циклические углеводороды, которые содержат в молекуле бензольное ядро и обладают особыми физическими и химическими свойствами. Арены по числу бензольных колец в молекуле и способа соединения циклов подразделяют на моноциклические (бензол и его гомологи) и полициклические (с конденсированными и изолированными циклами) соединения.

Арены бензольного ряда можно рассматривать как продукты замещения атомов водорода в молекуле бензола на алкильные радикалы. Общая формула таких аренов СnH 2 n- 6. В названии монозамещенных аренов указывают название радикала и цикла (бензол):

бензол метилбензол (толуол) этилбензол.

В более замещенных аренах положение радикалов указывают наименьшими цифрами, в дизамещенных аренах положение радикалов называют: 1,2 - орто (o -)-, 1,3 - мета (м -)- и 1,4 - пара (п -)-:

1,3-диметилбензол 1,2-метилэтилбензол

м -диметилбензол (м -ксилол) о -метилэтилбензол (о -ксилол)

Для аренов широко распространены тривиальные названия (некоторые названия указаны в скобках).

Нахождение в природе.

Ароматические углеводороды встречаются в растительных смолах и бальзамах. Фенантрен в частично или полностью гидрированном виде содержится в структурах многих природных соединений, например стероидов, алкалоидов.

Получение аренов:

1. сухая перегонка каменного угля;

2. дегидрирование циклоалканов

3. дегидроциклизация алканов с 6 и более атомами углерода в составе

4. алкилирование

Изомерия. Для гомологов бензола характерна структурная изомерия: различное строение углеродного скелета бокового радикала и различные состав и расположение радикалов в бензольном кольце. Например, изомеры ароматических углеводородов состава С 9 Н 12 (пропилбензол, изопропилбензол, о-метилэтилбензол и 1,2,4-триметилбензол):

Строение. Ароматические углеводороды имеют целый ряд особенностей в электронном строении молекул.

Структурную формулу бензола впервые предложил А. Кекуле. Это шестичленный цикл с чередующимися двойными и одинарными связями, при этом двойные связи перемещаются в структуре:

В обеих формулах углерод четырехвалентен, все атомы углерода равноценны и дизамещенные бензола существуют в виде трех изомеров (орто -, мета -, пара- ). Однако такая структура бензола противоречила его свойствам: бензол не вступал в характерные для непредельных углеводородов реакции присоединения (например, брома) и окисления (например, с перманганатом калия), для него и его гомологов основной тип химического превращения - реакции замещения.

Современный подход к описанию электронного строения бензола разрешает это противоречие следующим образом. Атомы углерода в молекуле бензола находятся в sр 2 -гибридизации. Каждый из атомов углерода образует три ковалентные σ-связи - 2 связи с соседними атомами углерода (sр 2 -sр 2 -перекрывание орбиталей) и одну с атомом водорода (sр 2 -s- перекрывание орбиталей). Негибридизованные р-орбитали за счет бокового перекрывания образуют π-электронную сопряженную систему (π,π-сопряжение), содержащую шесть электронов. Бензол представляет собой плоский правильный шестиугольник с длиной связи углерод-углерод 0,14нм, связи углерод-водород 0,11нм, валентными углами 120 0:

Молекула бензола стабильнее циклических соединений с изолированными двойными связями, поэтому бензол и его гомологи склонны к реакциям замещения (бензольное кольцо сохраняется), а не присоединения и окисления.

Сходство в строении и свойствах (ароматичность) с бензолом проявляют и другие циклические соединения. Критерии ароматичности (Э. Хюккель, 1931г.):

а) плоская циклическая структура, т.е. атомы, образующие цикл, находятся в sр 2 -гибридизации; б) сопряженная электронная система; в) число электронов (N) в кольце равно 4n+2, где n - любое целочисленное значение - 0,1,2,3 и т.д.

Критерии ароматичности применимы как к нейтральным, так и заряженным циклическим сопряженным соединениям, поэтому ароматическими соединениями будут, например:

фуран катион циклопропенила.

Для бензола и других ароматических соединений наиболее характерны реакции замещения атомов водорода при углеродных атомах в цикле и менее характерны реакции присоединения по π-связи в цикле.

Физические свойства.

Бензол и его гомологи являются бесцветными жидкостями и кристаллическими веществами со своеобразным запахом. Они легче воды и плохо в ней растворяются. Бензол неполярное соединение(μ=0), алкилбензолы -

полярные соединения(μ≠0).

Химические свойства.

Электрофильное замещение. Наиболее характерным превращением для аренов является электрофильное замещение - S Е. Реакция протекает в две стадии с образованием промежуточного σ-комплекса:

Условиях реакции: температура 60-80 0 С, катализаторы - кислоты Льюса или минеральные кислоты.

Типичные S Е - реакции:

а) галогенирование (Cl 2 , Br 2):

б) нитрование:

в ) сульфирование (H 2 SO 4 , SO 3 , олеум):

г) алкилирование по Фриделю-Крафтсу (1877г.) (RНal, ROH, алкены):

д) алкилирование по Фриделю-Крафтсу (галогенангидриды, ангидриды карбоновых кислот):

У гомологов бензола в результате влияния бокового радикала (+I-эффект, электронодонорная группа) π-электронная плотность бензольного кольца распределена неравномерно, увеличиваясь в 2,4,6-положениях. Поэтому S Е -реакции протекают направлено (в 2,4,6- или о- и п- положения). Гомологи бензола по сравнению с бензолом в реакциях этого типа проявляют большую реакционная активность.

толуол п -хлортолуол о -хлортолуол

Реакции боковых радикалов в алкилбензолах (радикальное замещение - S R и окисление).

Реакции радикального замещения протекают, как и в предельных углеводородах, по цепному механизму и включают стадии инициирования, роста и обрыва цепи. Реакция хлорирования протекает ненаправлено, реакция бромирования региоселективна - замещение водорода происходит уα-углеродного атома.

В алкилбензолах боковая цепь окисляется перманганатом калия, бихроматом калия с образованием карбоновых кислот. Независимо от длины боковой цепи, окисляется атом углерода, связанный с бензольным ядром (α-углеродный или бензильный атом углерода), остальные атомы углерода окисляются до СО 2 или карбоновых кислот.

этилбензол бензойная кислота

п -метилэтилбензол терефталевая кислота

Реакции бензола с нарушением ароматической системы.

Ароматические углеводороды имеют прочный цикл, поэтому реакции с нарушением ароматической системы (окисление, радикальное присоединение) протекают в жестких условиях (высокие температуры, сильные окислители).

а) радикальное присоединение:

1. гидрирование

толуол циклогексан

2. хлорирование

бензол 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Продукт этой реакции представляет смесь пространственных изомеров.

Ориентация электрофильного замещения в ароматических соединениях. Заместители в бензольном кольце по своему ориентирующему влиянию делятся на два типа: орто -, пара -ориентанты (заместители 1 рода) и мета -ориентанты (заместители 2 рода).

Заместители 1 рода - это электронодонорные группы, которые повышают электронную плотность кольца, увеличивают скорость реакции электрофильного замещения и активируют бензольное кольцо в этих реакциях:

D(+I-эффект): - R, -СН 2 ОН, -СН 2 NН 2 и т.д.

D(-I,+М-эффекты): -NH 2 ,-OH, -OR, -NR 2 , -SH и т.д.

Заместители 2 рода – электроноакцепторные группы, которые понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях:

А (-I-эффект): -SO 3 H, -CF 3 , -CСl 3 и т.д.

А (-I, -М -эффект): -НС=О, -СООН, -NO 2 и т. д.

Атомы галогенов занимают промежуточное положение - они понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях, однако это о -,п -ориентанты.

Если в бензольном кольце находится два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В реакциях электрофильного замещения соединения с согласованной ориентацией образуют меньшее количество изомеров, во втором случае образуется смесь из большего числа изомеров. Например:

п - гидроксибензойная кислота м - гидроксибензойная кислота

(согласованная ориентация) (несогласованная ориентация)

Полициклические конденсированные ароматические углеводороды (нафталин, антрацен, фенантрен и т.д.), в основном, по свойствам похожи на бензол, но вместе с тем имеют некоторые отличия.

Применение:

1. ароматические углеводороды - сырье для синтеза красителей, взрывчатых веществ, лекарственных препаратов, полимеров, поверхностно-активных веществ, карбоновых кислот, аминов;

2. жидкие ароматические углеводороды хорошие растворители органических соединений;

3. арены - добавки для получения высокооктановых бензинов.

Знаете ли вы, что -В 1649 году немецкий химик Иоганн Глаубер впервые получил бензол.

В 1825 году М. Фарадей выделил из светильного газа углеводород и установил его состав - С 6 Н 6 .

В 1830 году Юстус Либих назвал полученное соединение бензолом (от араб. Вen-аромат + zoa-сок + лат. ol-масло).

В1837 году Огюстом Лораном назван радикал бензола С 6 Н 5 - фенил (от греч phenix-освещать).

В 1865 году немецкий химик-органик Фридрих Август Кекуле предложил формулу бензола с чередующимися двойными и одинарными связями в шестичленном цикле.

В 1865-70-х годах В. Кернер предложил использовать приставки для обозначения взаимного расположения двух заместителей: 1,2 положение - орто- (orthos - прямой);1,3- мета (meta - после) и 1,4- пара (para - напротив).

Ароматические углеводороды - высокотоксичные вещества, вызывают отравление и поражение некоторых органов, например почек, печени.

Некоторые ароматические углеводороды - канцерогены (вещества, вызывающие раковые заболевания), например бензол (вызывает лейкемию), один из сильнейших - бензопирен (содержится в табачном дыме).

Понятие «бензольное кольцо» сразу требует расшифровки. Для этого необходимо хотя бы коротко рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865 г. немецким ученым А. Кекуле:



К наиболее важным ароматическим углеводородам относятся бензол С 6 Н 6 и его гомологи: толуол С 6 Н 5 СН з, ксилол С 6 Н 4 (СН з) 2 и др.; нафталин C 10 H 8 , антрацен С 14 Н 10 и их производные.


Атомы углерода в молекуле бензола образуют правильный плоский шестиугольник, хотя обычно его рисуют вытянутым.


Окончательно строение молекулы бензола подтверждено реакцией образования его из ацетилена. В структурной формуле изображается по три одинарных и три двойных чередующихся углерод-углеродных связей. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны, и они обладают свойствами, не похожими на свойства ни одинарных, ни двойных связей. Эти особенности объясняются электронным строением молекулы бензола.

Электронное строение бензола

Каждый атом углерода в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. В результате образуется плоский шестиугольник: все шесть атомов углерода и все σ-связи С-С и С-Н лежат в одной плоскости. Электронное облако четвертого электрона (р-электрона), не участвующего в гибридизации, имеет форму гантели и ориентировано перпендикулярно к плоскости бензольного кольца. Такие р-электронные облака соседних атомов углерода перекрываются над и под плоскостью кольца.



В результате шесть р-электронов образуют общее электронное облако и единую химическую связь для всех атомов углерода. Две области большой электронной плоскости расположены по обе стороны плоскости σ-связей.



p-Электронное облако обусловливает сокращение расстояния между атомами углерода. В молекуле бензола они одинаковы и равны 0,14 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет простых и двойных связей. Молекула бензола - устойчивый шестичленный цикл из одинаковых СН-групп, лежащих в одной плоскости. Все связи между атомами углерода в бензоле равноценны, чем и обусловлены характерные свойства бензольного ядра. Наиболее точно это отражает структурная формула бензола в виде правильного шестиугольника с окружностью внутри (I). (Окружность символизирует равноценность связей между атомами углерода.) Однако часто пользуются и формулой Кекуле с указанием двойных связей (II):



Бензольное ядро обладает определенной совокупностью свойств, которую принято называть ароматичностью.

Гомологический ряд, изомерия, номенклатура

Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму - конденсированные (полиядерные) арены (простейший из них - нафталин):



Гомологический ряд бензола имеет общую формулу С n Н 2 n -6 . Гомологи можно рассматривать как производные бензола, в котором один или несколько атомов водорода замещены различными углеводородными радикалами. Например, С 6 Н 5 -СН 3 - метилбензол или толуол, С 6 Н 4 (СН 3) 2 - диметилбензол или ксилол, С 6 Н 5 -С 2 Н 5 - этилбензол и т.д.



Так как в бензоле все углеродные атомы равноценны, то у первого его гомолога - толуола - изомеры отсутствуют. У второго гомолога - диметилбензола - имеются три изомера, отличающиеся взаимным расположением метильных групп (заместителей). Это орто- (сокращенно о-), или 1,2-изомер, в нем заместители находятся у соседних атомов углерода. Если заместители разделены одним атомом углерода, то это мета- (сокращенно м-) или 1,3-изомер, а если они разделены двумя атомами углерода, то это пара- (сокращенно п-) или 1,4-изомер. В названиях заместители обозначаются буквами (о-, м-, п-) или цифра­ми.



Физические свойства

Первые члены гомологического ряда бензола - бесцветные жидкости со специфическим запахом. Плотность их меньше 1 (легче воды). В воде нерастворимы. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Химические свойства

Ароматичность определяет химические свойства бензола и его гомологов. Шестиэлектронная π-система является более устойчивой, чем обычные двухэлектронные π-связи. Поэтому реакции присоединения менее характерны для ароматических углеводородов, чем для непредельных углеводородов. Наиболее характерными для аренов являются реакции замещения. Таким образом, ароматические углеводороды по своим химическим свойствам занимают промежуточное положение между предельными и непредельными углеводородами.

I. Реакции замещения

1. Галогенирование (с Cl 2 , Вr 2)


2. Нитрование


3. Сульфирование


4. Алкилирование (образуются гомологи бензола) - реакции Фриделя-Крафтса


Алкилирование бензола происходит также при его взаимодействии с алкенами:



Дегидрированием этилбензола получают стирол (винилбензол):



II. Реакции присоединения

1. Гидрирование


2. Хлорирование


III. Реакции окисления

1. Горение

2С 6 Н 6 + 15O 2 → 12СO 2 + 6Н 2 O

2. Окисление под действием КМnO 4 , К 2 Сr 2 O 7 , HNO 3 и др.

Не происходит химической реакции (сходство с алканами).

Свойства гомологов бензола

В гомологах бензола различают ядро и боковую цепь (алкильные радикалы). По химическим свойствам алкильные радикалы подобны алканам; влияние бензольного ядра на них проявляется в том, что в реакциях замещения всегда участвуют атомы водорода у атома углерода, непосредственно связанного с бензольным ядром, а также в более легкой окисляемости С-Н связей.



Влияние электронодонорного алкильного радикала (например, -СН 3) на бензольное ядро проявляется в повышении эффективных отрицательных зарядов на атомах углерода в орто- и пара-положениях; в результате облегчается замещение связанных с ними атомов водорода. Поэтому гомологи бензола могут образовывать тризамещенные продукты (а бензол обычно образует монозамещенные производные).