Вычислить острый угол между прямыми 2x. Угол между двумя прямыми. Угол между плоскостями

Угол φ общими уравнениями A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0, вычисляется по формуле:

Угол φ между двумя прямыми, заданными каноническими уравнениями (x-x 1)/m 1 = (y-y 1)/n 1 и (x-x 2)/m 2 = (y-y 2)/n 2 , вычисляется по формуле:

Расстояние от точки до прямой

Каждую плоскость в пространстве можно представить как линейное уравнение, называемое общим уравнением плоскости

Частные случаи .

o Если в уравнении (8) , то плоскость проходит через начало координат.

o При (,) плоскость параллельна оси(оси, оси) соответственно.

o При (,) плоскость параллельна плоскости(плоскости, плоскости).

Решение: используем (7)

Ответ: общее уравнение плоскости .

    Пример.

Плоскость в прямоугольной системе координат Oxyz задана общим уравнением плоскости . Запишите координаты всех нормальных векторов этой плоскости.

Нам известно, что коэффициенты при переменных x, y и z в общем уравнении плоскости являются соответствующими координатами нормального вектора этой плоскости. Следовательно, нормальный вектор заданной плоскостиимеет координаты. Множество всех нормальных векторов можно задать как.

Напишите уравнение плоскости, если в прямоугольной системе координат Oxyz в пространстве она проходит через точку , а- нормальный вектор этой плоскости.

Приведем два решения этой задачи.

Из условия имеем . Подставляем эти данные в общее уравнение плоскости, проходящей через точку:

Напишите общее уравнение плоскости параллельной координатной плоскости Oyz и проходящей через точку .

Плоскость, которая параллельна координатной плоскости Oyz, может быть задана общим неполным уравнением плоскости вида . Так как точкапринадлежит плоскости по условию, то координаты этой точки должны удовлетворять уравнению плоскости, то есть, должно быть справедливо равенство. Отсюда находим. Таким образом, искомое уравнение имеет вид.

Решение. Векторное произведение по определению 10.26 ортогонально векторам p и q. Следовательно, оно ортогонально искомой плоскости и вектор можно взять в качестве ее нормального вектора. Найдем координаты вектора n:

то есть . Используя формулу (11.1), получим

Раскрыв в этом уравнении скобки, приходим к окончательному ответу.

Ответ: .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

У параллельных плоскостей один и тот же вектор нормали. 1) Из уравнения найдём вектор нормали плоскости:.

2) Уравнение плоскости составим по точкеи вектору нормали:

Ответ :

Векторное уравнение плоскости в пространстве

Параметрическое уравнение плоскости в пространстве

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть в трехмерном пространстве задана прямоугольная декартова система координат. Сформулируем следующую задачу:

Составить уравнение плоскости, проходящей через данную точку M (x 0, y 0, z 0) перпендикулярно данному вектору n = {A , B , C } .

Решение. Пусть P (x , y , z ) - произвольная точка пространства. Точка P принадлежит плоскости тогда и только тогда, когда вектор MP = {x x 0, y y 0, z z 0} ортогонален вектору n = {A , B , C } (рис.1).

Написав условие ортогональности этих векторов (n, MP ) = 0 в координатной форме, получим:

A (x x 0) + B (y y 0) + C (z z 0) = 0

Уравнение плоскости по трем точкам

В векторном виде

В координатах


Взаимное расположение плоскостей в пространстве

– общие уравнения двух плоскостей. Тогда:

1) если , то плоскости совпадают;

2) если , то плоскости параллельны;

3) если или , то плоскости пересекаются и системауравнений

(6)

является уравнениями прямой пересечения данных плоскостей.

Решение : Канонические уравнения прямой составим по формуле:

Ответ :

Берём полученные уравнения и мысленно «отщипываем», например, левый кусочек: . Теперь этот кусочек приравниваем к любому числу (помним, что ноль уже был), например, к единице: . Так как , то и два других «куска» тоже должны быть равны единице. По сути, нужно решить систему:

Составить параметрические уравнения следующих прямых:

Решение : Прямые заданы каноническими уравнениями и на первом этапе следует найти какую-нибудь точку, принадлежащую прямой, и её направляющий вектор.

а) Из уравнений снимаем точку и направляющий вектор: . Точку можно выбрать и другую (как это сделать – рассказано выше), но лучше взять самую очевидную. Кстати, во избежание ошибок, всегда подставляйте её координаты в уравнения.

Составим параметрические уравнения данной прямой:

Удобство параметрических уравнений состоит в том, что с их помощью очень легко находить другие точки прямой. Например, найдём точку , координаты которой, скажем, соответствуют значению параметра :

Таким образом: б) Рассмотрим канонические уравнения . Выбор точки здесь несложен, но коварен: (будьте внимательны, не перепутайте координаты!!!). Как вытащить направляющий вектор? Можно порассуждать, чему параллельна данная прямая, а можно использовать простой формальный приём: в пропорции находятся «игрек» и «зет», поэтому запишем направляющий вектор , а на оставшееся место поставим ноль: .

Составим параметрические уравнения прямой:

в) Перепишем уравнения в виде , то есть «зет» может быть любым. А если любым, то пусть, например, . Таким образом, точка принадлежит данной прямой. Для нахождения направляющего вектора используем следующий формальный приём: в исходных уравнениях находятся «икс» и «игрек», и в направляющем векторе на данных местах записываем нули : . На оставшееся место ставим единицу : . Вместо единицы подойдёт любое число, кроме нуля.

Запишем параметрические уравнения прямой:

Пусть две прямые l и m на плоскости в декартовой системе координат заданы общими уравнениями: l: A 1 x + B 1 y + C 1 = 0, m: A 2 x + B 2 y + C 2 = 0

Векторы нормалей к данным прямым: = (A 1 , B 1) – к прямой l,

= (A 2 , B 2) – к прямой m.

Пусть j - угол между прямыми l и m.

Так как углы с взаимно перпендикулярными сторонами либо равны, либо в сумме составляют p, то , то есть cos j = .

Итак, мы доказали следующую теорему.

Теорема. Пусть j - угол между двумя прямыми на плоскости, и пусть эти прямые заданы в декартовой системе координат общими уравнениями A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0. Тогда cos j = .

Упражнения.

1) Выведите формулу для вычисления угла между прямыми, если:

(1) обе прямые заданы параметрически; (2) обе прямые заданы каноническими уравнениями; (3) одна прямая задана параметрически, другая прямая – общим уравнением; (4) обе прямые заданы уравнением с угловым коэффициентом.

2) Пусть j - угол между двумя прямыми на плоскости, и пусть эти прямые заданы декартовой системе координат уравнениями y = k 1 x + b 1 и y =k 2 x + b 2 .

Тогда tg j = .

3) Исследуйте взаимное расположение двух прямых, заданных общими уравнениями в декартовой системе координат, и заполните таблицу:

Расстояние от точки до прямой на плоскости.

Пусть на плоскости в декартовой системе координат прямая l задана общим уравнением Ax + By + C = 0. Найдем расстояние от точки M(x 0 , y 0) до прямой l.

Расстояние от точки M до прямой l – это длина перпендикуляра HM (H Î l, HM ^ l).

Вектор и вектор нормали к прямой l коллинеарны, так что | | = | | | | и | | = .

Пусть координаты точки H (x,y).

Так как точка H принадлежит прямой l, то Ax + By + C = 0 (*).

Координаты векторов и : = (x 0 - x, y 0 - y), = (A, B).

| | = = =

(C = -Ax - By , см. (*))

Теорема. Пусть прямая l задана в декартовой системе координат общим уравнением Ax + By + C = 0. Тогда расстояние от точки M(x 0 , y 0) до данной прямой вычисляется по формуле: r (M; l) = .

Упражнения.

1) Выведите формулу для вычисления расстояния от точки до прямой, если: (1) прямая задана параметрически; (2) прямая задана каноническим уравнениям; (3) прямая задана уравнением с угловым коэффициентом.

2) Напишите уравнение окружности, касающейся прямой 3x – y = 0,с центром в точке Q(-2,4).

3) Напишите уравнения прямых, делящих углы, образованные пересечением прямых 2x + y - 1 = 0 и x + y + 1 = 0 , пополам.

§ 27. Аналитическое задание плоскости в пространстве

Определение . Вектором нормали к плоскости будем называть ненулевой вектор, любой представитель которого перпендикулярен данной плоскости.

Замечание. Ясно, что если хотя бы один представитель вектора перпендикулярен плоскости, то и все остальные представители вектора перпендикулярны этой плоскости.

Пусть в пространстве задана декартова система координат.

Пусть дана плоскость a, = (A, B, C) – вектор нормали к этой плоскости, точка M (x 0 , y 0 , z 0) принадлежит плоскости a.

Для любой точки N(x, y, z) плоскости a векторы и ортогональны, то есть их скалярное произведение равно нулю: = 0. Запишем последнее равенство в координатах: A(x - x 0) + B(y - y 0) + C(z - z 0) = 0.

Пусть -Ax 0 - By 0 - Cz 0 = D, тогда Ax + By + Cz + D = 0.

Возьмем точку К (x, y) такую, что Ax + By + Cz + D = 0. Так как D = -Ax 0 - By 0 - Cz 0 , то A(x - x 0) + B(y - y 0) + C(z - z 0) = 0. Так как координаты направленного отрезка = (x - x 0 , y - y 0 , z - z 0), то последнее равенство означает, что ^ , и, следовательно, K Î a.

Итак, мы доказали следующую теорему:

Теорема. Любую плоскость в пространстве в декартовой системе координат можно задать уравнением вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0), где (A, B, C) – координаты вектора нормали к этой плоскости.

Верно и обратное.

Теорема. Любое уравнение вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) в декартовой системе координат задает некоторую плоскость, при этом (A, B, C) – координаты вектора нормали к этой плоскости.

Доказательство.

Возьмем точку M (x 0 , y 0 , z 0) такую, что Ax 0 + By 0 + Cz 0 + D = 0 и вектор = (A, B, C) ( ≠ q).

Через точку M перпендикулярно вектору проходит плоскость (и при том только одна). По предыдущей теореме эта плоскость задается уравнением Ax + By + Cz + D = 0.

Определение. Уравнение вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) называется общим уравнением плоскости .

Пример.

Напишем уравнение плоскости, проходящей через точки M (0,2,4), N (1,-1,0) и K (-1,0,5).

1. Найдем координаты вектора нормали к плоскости (MNK). Так как векторное произведение ´ ортогонально не коллинеарным векторам и , то вектор коллинеарен ´ .

= (1, -3, -4), = (-1, -2, 1);

´ = (-11, 3, -5).

Итак, в качестве вектора нормали возьмем вектор = (-11, 3, -5).

2. Воспользуемся теперь результатами первой теоремы:

уравнение данной плоскости A(x - x 0) + B(y - y 0) + C(z - z 0) = 0, где (A, B, C) – координаты вектора нормали, (x 0 , y 0 , z 0) – координаты точки лежащей в плоскости (например, точки M).

11(x - 0) + 3(y - 2) - 5(z - 4) = 0

11x + 3y – 5z + 14 = 0

Ответ: -11x + 3y - 5z + 14 = 0.

Упражнения.

1) Напишите уравнение плоскости, если

(1) плоскость проходит через точку M (-2,3,0) параллельно плоскости 3x + y + z = 0;

(2) плоскость содержит ось (Ox) и перпендикулярна плоскости x + 2y – 5z + 7 = 0.

2) Напишите уравнение плоскости, проходящей через три данные точки.

§ 28. Аналитическое задание полупространства*

Замечание* . Пусть фиксирована некоторая плоскость. Под полупространством мы будем понимать множество точек, лежащих по одну сторону от данной плоскости, то есть две точки лежат в одном полупространстве, если отрезок, их соединяющий, не пересекает данную плоскость. Данная плоскость называется границей этого полупространства . Объединение данной плоскости и полупространства будем называть замкнутым полупространством .

Пусть в пространстве фиксирована декартова система координат.

Теорема. Пусть плоскость a задана общим уравнением Ax + By + Cz + D = 0. Тогда одно из двух полупространств, на которые плоскость a делит пространство, задается неравенством Ax + By + Cz + D > 0, а второе полупространство задается неравенством Ax + By + Cz + D < 0.

Доказательство.

Отложим вектор нормали = (A, B, С) к плоскости a от точки M (x 0 , y 0 , z 0), лежащей на данной плоскости: = , M Î a, MN ^ a. Плоскость делить пространство на два полупространства: b 1 и b 2 . Ясно, что точка N принадлежит одному из этих полупространств. Без ограничения общности будем считать, что N Î b 1 .

Докажем, что полупространство b 1 задается неравенством Ax + By + Cz + D > 0.

1) Возьмем точку K(x,y,z) в полупространстве b 1 . Угол Ð NMK – угол между векторами и - острый, поэтому скалярное произведение этих векторов положительно: > 0. Запишем это неравенство в координатах: A(x - x 0) + B(y - y 0) + C(z - z 0) > 0, то есть Ax + By + Cy - Ax 0 - By 0 - C z 0 > 0.

Так как M Î b 1 , то Ax 0 + By 0 + C z 0 + D = 0, поэтому -Ax 0 - By 0 - C z 0 = D. Следовательно, последнее неравенство можно записать так: Ax + By + Cz + D > 0.

2) Возьмем точку L(x,y) такую, что Ax + By + Cz + D > 0.

Перепишем неравенство, заменив D на (-Ax 0 - By 0 - C z 0) (так как M Î b 1 , то Ax 0 + By 0 + C z 0 + D = 0): A(x - x 0) + B(y - y 0) + C(z - z 0) > 0.

Вектор с координатами (x - x 0 ,y - y 0 , z - z 0) – это вектор , поэтому выражение A(x - x 0) + B(y - y 0) + C(z - z 0) можно понимать, как скалярное произведение векторов и . Так как скалярное произведение векторов и положительно, то угол между ними острый и точка L Î b 1 .

Аналогично можно доказать, что полупространство b 2 задается неравенством Ax + By + Cz + D < 0.

Замечания.

1) Ясно, что доказательство, приведенное выше, не зависит от выбора точки M в плоскости a.

2) Ясно, что одно и то же полупространство можно задать различными неравенствами.

Верно и обратное.

Теорема. Любое линейное неравенство вида Ax + By + Cz + D > 0 (или Ax + By + Cz + D < 0) (A 2 + B 2 + C 2 ≠ 0) задает в пространстве в декартовой системе координат полупространство с границей Ax + By + Cz + D = 0.

Доказательство.

Уравнение Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) в пространстве задает некоторую плоскость a (см. § …). Как было доказано в предыдущей теореме одно из двух полупространств, на которые плоскость делит пространство задается неравенством Ax Ax + By + Cz + D > 0.

Замечания.

1) Ясно, что замкнутое полупространство можно задать нестрогим линейным неравенством, и любое нестрогое линейное неравенство в декартовой системе координат задает замкнутое полупространство.

2) Любой выпуклый многогранник можно задать как пересечение замкнутых полупространств (границы которых – это плоскости, содержащие грани многогранника), то есть аналитически – системой линейных нестрогих неравенств.

Упражнения.

1) Докажите две представленные теоремы для произвольной аффинной системы координат.

2) Верно ли обратное, что любая ли система нестрогих линейных неравенств задает выпуклый многоугольник?

Упражнение.

1) Исследуйте взаимное расположение двух плоскостей, заданных общими уравнениями в декартовой системе координат, и заполните таблицу.

Задача 1

Найти косинус угла между прямыми $\frac{x+3}{5} =\frac{y-2}{-3} =\frac{z-1}{4} $ и $\left\{\begin{array}{c} {x=2\cdot t-3} \\ {y=-t+1} \\ {z=3\cdot t+5} \end{array}\right. $.

Пусть в пространстве заданы две прямые: $\frac{x-x_{1} }{m_{1} } =\frac{y-y_{1} }{n_{1} } =\frac{z-z_{1} }{p_{1} } $ и $\frac{x-x_{2} }{m_{2} } =\frac{y-y_{2} }{n_{2} } =\frac{z-z_{2} }{p_{2} } $. Выберем в пространстве произвольную точку и проведем через неё две вспомогательные прямые, параллельные данным. Углом между данными прямыми является любой из двух смежных углов, образованных вспомогательными прямыми. Косинус одного из углов между прямыми можно найти по известной формуле $\cos \phi =\frac{m_{1} \cdot m_{2} +n_{1} \cdot n_{2} +p_{1} \cdot p_{2} }{\sqrt{m_{1}^{2} +n_{1}^{2} +p_{1}^{2} } \cdot \sqrt{m_{2}^{2} +n_{2}^{2} +p_{2}^{2} } } $. Если значение $\cos \phi >0$, то получен острый угол между прямыми, если $\cos \phi

Канонические уравнения первой прямой: $\frac{x+3}{5} =\frac{y-2}{-3} =\frac{z-1}{4} $.

Канонические уравнения второй прямой можно получить из параметрических:

\ \ \

Таким образом, канонические уравнения данной прямой: $\frac{x+3}{2} =\frac{y-1}{-1} =\frac{z-5}{3} $.

Вычисляем:

\[\cos \phi =\frac{5\cdot 2+\left(-3\right)\cdot \left(-1\right)+4\cdot 3}{\sqrt{5^{2} +\left(-3\right)^{2} +4^{2} } \cdot \sqrt{2^{2} +\left(-1\right)^{2} +3^{2} } } =\frac{25}{\sqrt{50} \cdot \sqrt{14} } \approx 0,9449.\]

Задача 2

Первая прямая проходит через заданные точки $A\left(2,-4,-1\right)$ и $B\left(-3,5,6\right)$, вторая прямая -- через заданные точки $C\left(1,-2,8\right)$ и $D\left(6,7,-2\right)$. Найти расстояние между этими прямыми.

Пусть некоторая прямая перпендикулярна к прямым $AB$ и $CD$ и пересекает их в точках $M$ и $N$ соответственно. При таких условиях длина отрезка $MN$ равна расстоянию между прямыми $AB$ и $CD$.

Строим вектор $\overline{AB}$:

\[\overline{AB}=\left(-3-2\right)\cdot \bar{i}+\left(5-\left(-4\right)\right)\cdot \bar{j}+\left(6-\left(-1\right)\right)\cdot \bar{k}=-5\cdot \bar{i}+9\cdot \bar{j}+7\cdot \bar{k}.\]

Пусть отрезок, изображающий расстояние между прямыми, проходит через точку $M\left(x_{M} ,y_{M} ,z_{M} \right)$ на прямой $AB$.

Строим вектор $\overline{AM}$:

\[\overline{AM}=\left(x_{M} -2\right)\cdot \bar{i}+\left(y_{M} -\left(-4\right)\right)\cdot \bar{j}+\left(z_{M} -\left(-1\right)\right)\cdot \bar{k}=\] \[=\left(x_{M} -2\right)\cdot \bar{i}+\left(y_{M} +4\right)\cdot \bar{j}+\left(z_{M} +1\right)\cdot \bar{k}.\]

Векторы $\overline{AB}$ и $\overline{AM}$ совпадают, следовательно, они коллинеарны.

Известно, что если векторы $\overline{a}=x_{1} \cdot \overline{i}+y_{1} \cdot \overline{j}+z_{1} \cdot \overline{k}$ и $\overline{b}=x_{2} \cdot \overline{i}+y_{2} \cdot \overline{j}+z_{2} \cdot \overline{k}$ коллинеарны, то их координаты пропорциональны, то есть $\frac{x_{{\it 2}} }{{\it x}_{{\it 1}} } =\frac{y_{{\it 2}} }{{\it y}_{{\it 1}} } =\frac{z_{{\it 2}} }{{\it z}_{{\it 1}} } $.

$\frac{x_{M} -2}{-5} =\frac{y_{M} +4}{9} =\frac{z_{M} +1}{7} =m$, где $m$ -- результат деления.

Отсюда получаем: $x_{M} -2=-5\cdot m$; $y_{M} +4=9\cdot m$; $z_{M} +1=7\cdot m$.

Окончательно получаем выражения для координат точки $M$:

Строим вектор $\overline{CD}$:

\[\overline{CD}=\left(6-1\right)\cdot \bar{i}+\left(7-\left(-2\right)\right)\cdot \bar{j}+\left(-2-8\right)\cdot \bar{k}=5\cdot \bar{i}+9\cdot \bar{j}-10\cdot \bar{k}.\]

Пусть отрезок, изображающий расстояние между прямыми, проходит через точку $N\left(x_{N} ,y_{N} ,z_{N} \right)$ на прямой $CD$.

Строим вектор $\overline{CN}$:

\[\overline{CN}=\left(x_{N} -1\right)\cdot \bar{i}+\left(y_{N} -\left(-2\right)\right)\cdot \bar{j}+\left(z_{N} -8\right)\cdot \bar{k}=\] \[=\left(x_{N} -1\right)\cdot \bar{i}+\left(y_{N} +2\right)\cdot \bar{j}+\left(z_{N} -8\right)\cdot \bar{k}.\]

Векторы $\overline{CD}$ и $\overline{CN}$ совпадають, следовательно, они коллинеарны. Применяем условие коллинеарности векторов :

$\frac{x_{N} -1}{5} =\frac{y_{N} +2}{9} =\frac{z_{N} -8}{-10} =n$, где $n$ -- результат деления.

Отсюда получаем: $x_{N} -1=5\cdot n$; $y_{N} +2=9\cdot n$; $z_{N} -8=-10\cdot n$.

Окончательно получаем выражения для координат точки $N$:

Строим вектор $\overline{MN}$:

\[\overline{MN}=\left(x_{N} -x_{M} \right)\cdot \bar{i}+\left(y_{N} -y_{M} \right)\cdot \bar{j}+\left(z_{N} -z_{M} \right)\cdot \bar{k}.\]

Подставляем выражения для координат точек $M$ и $N$:

\[\overline{MN}=\left(1+5\cdot n-\left(2-5\cdot m\right)\right)\cdot \bar{i}+\] \[+\left(-2+9\cdot n-\left(-4+9\cdot m\right)\right)\cdot \bar{j}+\left(8-10\cdot n-\left(-1+7\cdot m\right)\right)\cdot \bar{k}.\]

Выполнив действия, получаем:

\[\overline{MN}=\left(-1+5\cdot n+5\cdot m\right)\cdot \bar{i}+\left(2+9\cdot n-9\cdot m\right)\cdot \bar{j}+\left(9-10\cdot n-7\cdot m\right)\cdot \bar{k}.\]

Поскольку прямые $AB$ и $MN$ перпендикулярны, то скалярное произведение соответствующих векторов равно нулю, то есть $\overline{AB}\cdot \overline{MN}=0$:

\[-5\cdot \left(-1+5\cdot n+5\cdot m\right)+9\cdot \left(2+9\cdot n-9\cdot m\right)+7\cdot \left(9-10\cdot n-7\cdot m\right)=0;\] \

Выполнив действия, получаем первое уравнение для определения $m$ и $n$: $155\cdot m+14\cdot n=86$.

Поскольку прямые $CD$ и $MN$ перпендикулярны, то скалярное произведение соответствующих векторов равно нулю, то есть $\overline{CD}\cdot \overline{MN}=0$:

\ \[-5+25\cdot n+25\cdot m+18+81\cdot n-81\cdot m-90+100\cdot n+70\cdot m=0.\]

Выполнив действия, получаем второе уравнение для определения $m$ и $n$: $14\cdot m+206\cdot n=77$.

Находим $m$ и $n$, решив систему уравнений $\left\{\begin{array}{c} {155\cdot m+14\cdot n=86} \\ {14\cdot m+206\cdot n=77} \end{array}\right. $.

Применяем метод Крамера:

\[\Delta =\left|\begin{array}{cc} {155} & {14} \\ {14} & {206} \end{array}\right|=31734; \] \[\Delta _{m} =\left|\begin{array}{cc} {86} & {14} \\ {77} & {206} \end{array}\right|=16638; \] \[\Delta _{n} =\left|\begin{array}{cc} {155} & {86} \\ {14} & {77} \end{array}\right|=10731;\] \

Находим координаты точек $M$ и $N$:

\ \

Окончательно:

Окончательно записываем вектор $\overline{MN}$:

$\overline{MN}=\left(2,691-\left(-0,6215\right)\right)\cdot \bar{i}+\left(1,0438-0,7187\right)\cdot \bar{j}+\left(4,618-2,6701\right)\cdot \bar{k}$ или $\overline{MN}=3,3125\cdot \bar{i}+0,3251\cdot \bar{j}+1,9479\cdot \bar{k}$.

Расстояние между прямыми $AB$ и $CD$ -- это длина вектора $\overline{MN}$:$d=\sqrt{3,3125^{2} +0,3251^{2} +1,9479^{2} } \approx 3,8565$ лин. ед.

Пусть в пространстве заданы прямые l и m . Через некоторую точку А пространства проведем прямые l 1 || l и m 1 || m (рис. 138).

Заметим, что точка А может быть выбрана произвольно, в частности она может лежать на одной из данных прямых. Если прямые l и m пересекаются, то за А можно взять точку пересечения этих прямых (l 1 = l и m 1 = m ).

Углом между непараллельными прямыми l и m называется величина наименьшего из смежных углов, образованных пересекающимися прямыми l 1 и m 1 (l 1 || l , m 1 || m ). Угол между параллельными прямыми считается равным нулю.

Угол между прямыми l и m обозначается \(\widehat{(l;m)} \). Из определения следует, что если он измеряется в градусах, то 0°< \(\widehat{(l;m)} \) < 90°, а если в радианах, то 0 < \(\widehat{(l;m)} \) < π / 2 .

Задача. Дан куб ABCDA 1 B 1 C 1 D 1 (рис. 139).

Найти угол между прямыми АВ и DС 1 .

Прямые АВ и DС 1 скрещивающиеся. Так как прямая DC параллельна прямой АВ, то угол между прямыми АВ и DС 1 , согласно определению, равен \(\widehat{C_{1}DC}\).

Следовательно, \(\widehat{(AB;DC_1)}\) = 45°.

Прямые l и m называются перпендикулярными , если \(\widehat{(l;m)} \) = π / 2 . Например, в кубе

Вычисление угла между прямыми.

Задача вычисления угла между двумя прямыми в пространстве решается так же, как и на плоскости. Обозначим через φ величину угла между прямыми l 1 и l 2 , а через ψ - величину угла между направляющими векторами а и b этих прямых.

Тогда, если

ψ <90° (рис. 206, а), то φ = ψ; если же ψ > 90° (рис. 206,6), то φ = 180° - ψ. Очевидно, что в обоих случаях верно равенство cos φ = |cos ψ|. По формуле (косинус угла между ненулевыми векторами а и b равен скалярному произведению этих векторов, деленному на произведение их длин) имеем

$$ cos\psi = cos\widehat{(a; b)} = \frac{a\cdot b}{|a|\cdot |b|} $$

следовательно,

$$ cos\phi = \frac{|a\cdot b|}{|a|\cdot |b|} $$

Пусть прямые заданы своими каноническими уравнениями

$$ \frac{x-x_1}{a_1}=\frac{y-y_1}{a_2}=\frac{z-z_1}{a_3} \;\; и \;\; \frac{x-x_2}{b_1}=\frac{y-y_2}{b_2}=\frac{z-z_2}{b_3} $$

Тогда угол φ между прямыми определяется с помощью формулы

$$ cos\phi = \frac{|a_{1}b_1+a_{2}b_2+a_{3}b_3|}{\sqrt{{a_1}^2+{a_2}^2+{a_3}^2}\sqrt{{b_1}^2+{b_2}^2+{b_3}^2}} (1)$$

Если одна из прямых (или обе) задана не каноничecкими уравнениями, то для вычисления угла нужно найти координаты направляющих векторов этих прямых, а затем воспользоваться формулой (1).

Задача 1. Вычислить угол между прямыми

$$ \frac{x+3}{-\sqrt2}=\frac{y}{\sqrt2}=\frac{z-7}{-2} \;\;и\;\; \frac{x}{\sqrt3}=\frac{y+1}{\sqrt3}=\frac{z-1}{\sqrt6} $$

Направляющие векторы прямых имеют координаты:

а = (-√2 ; √2 ; -2), b = (√3 ; √3 ; √6 ).

По формуле (1) находим

$$ cos\phi = \frac{|-\sqrt6+\sqrt6-2\sqrt6|}{\sqrt{2+2+4}\sqrt{3+3+6}}=\frac{2\sqrt6}{2\sqrt2\cdot 2\sqrt3}=\frac{1}{2} $$

Следовательно, угол между данными прямыми равен 60°.

Задача 2. Вычислить угол между прямыми

$$ \begin{cases}3x-12z+7=0\\x+y-3z-1=0\end{cases} и \begin{cases}4x-y+z=0\\y+z+1=0\end{cases} $$

За направляющий вектор а первой прямой возьмем векторное произведение нормальных векторов n 1 = (3; 0; -12) и n 2 = (1; 1; -3) плоскостей, задающих эту прямую. По формуле \(=\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} \) получаем

$$ a==\begin{vmatrix} i & j & k \\ 3 & 0 & -12 \\ 1 & 1 & -3 \end{vmatrix}=12i-3i+3k $$

Аналогично находим направляющий вектор второй прямой:

$$ b=\begin{vmatrix} i & j & k \\ 4 & -1 & 1 \\ 0 & 1 & 1 \end{vmatrix}=-2i-4i+4k $$

Но формуле (1) вычисляем косинус искомого угла:

$$ cos\phi = \frac{|12\cdot (-2)-3(-4)+3\cdot 4|}{\sqrt{12^2+3^2+3^2}\sqrt{2^2+4^2+4^2}}=0 $$

Следовательно, угол между данными прямыми равен 90°.

Задача 3. В треугольной пирамиде МАВС ребра MA, MB и МС взаимно перпендикулярны, (рис. 207);

их длины соответственно равны 4, 3, 6. Точка D - середина [МА]. Найти угол φ между прямыми СА и DB.

Пусть СА и DB - направляющие векторы прямых СА и DB.

Примем точку М за начало координат. По условию зядачи имеем А (4; 0; 0), В(0; 0; 3), С(0; 6; 0), D (2; 0; 0). Поэтому \(\overrightarrow{CA}\) = (4; - 6;0), \(\overrightarrow{DB}\)= (-2; 0; 3). Воспользуемся формулой (1):

$$ cos\phi=\frac{|4\cdot (-2)+(-6)\cdot 0+0\cdot 3|}{\sqrt{16+36+0}\sqrt{4+0+9}} $$

По таблице косинусов находим, что угол между прямыми СА и DB равен приблизительно 72°.

Буду кратким. Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x 1 ; y 1 ; z 1) и b = (x 2 ; y 2 ; z 2), то сможете найти угол. Точнее, косинус угла по формуле:

Посмотрим, как эта формула работает на конкретных примерах:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 отмечены точки E и F - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AE и BF.

Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.

Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E - середина отрезка A 1 B 1 , ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).

Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F - середина отрезка B 1 C 1 . Имеем:
BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).

Итак, направляющие векторы готовы. Косинус угла между прямыми - это косинус угла между направляющими векторами, поэтому имеем:

Задача. В правильной трехгранной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, отмечены точки D и E - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AD и BE.

Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z - вдоль AA 1 . Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.

Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D - середина отрезка A 1 B 1 . Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).

Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E - серединой отрезка C 1 B 1 - чуть сложнее. Имеем:

Осталось найти косинус угла:

Задача. В правильной шестигранной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, отмечены точки K и L - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AK и BL.

Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y - через середины отрезков AB и DE, а ось z - вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:

Точки K и L - середины отрезков A 1 B 1 и B 1 C 1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:

Теперь найдем косинус угла:

Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F - середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.

Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.

Точки E и F - середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек:
A = (0; 0; 0); B = (1; 0; 0)

Зная точки, найдем координаты направляющих векторов AE и BF:

Координаты вектора AE совпадают с координатами точки E, поскольку точка A - начало координат. Осталось найти косинус угла: