Из чего состоят молекулы льда. Свойства воды. Молекулярно-кинетическая теория вещества и воды

Вариант № 1.

1. Отличаются ли друг от друга молекулы льда и воды?

1) они одинаковы; 2) молекула льда холоднее; 3) молекула льда меньше;

4) молекула воды меньше

2. Что такое диффузия?

Молекулами другого; 3) хаотическое движение молекул вещества;

4) перемешивание веществ

4. При охлаждении вещества молекулы движутся:

Рода вещества

5. Скорость движения молекул водорода увеличилась. При этом

Температура …

Ответа нет

6. Если перелить воду из стакана в тарелку, то …

Форма и объем

7. В какой воде диффузия происходит быстрее?

Происходит

8. В каких веществах диффузия происходит медленнее при оди-

Наковых условиях?

Всех веществах

9. Молекулы вещества расположены на больших расстояниях,

Сильно притягиваются и колеблются около положения равновесия

Это вещество …

1) газообразное; 2) жидкое; 3) твердое; 4) такого вещества не существует

Вариант № 2.

1. Отличаются ли друг от друга молекулы льда и водяного пара?

1) молекула льда холоднее; 2) они одинаковы; 3) молекула льда

Меньше; 4) молекула льда больше

2. Диффузия – это …

1) проникновение молекул одного вещества в молекулы другого;

2) проникновение молекул одного вещества в промежутки между

Молекулами другого; 3) хаотическое движение молекул вещест-

Ва; 4) перемешивание веществ

3. Между молекулами любого вещества существует:

1) взаимное притяжение; 2) взаимное отталкивание; 3) взаимное

Притяжение и отталкивание; 4) у разных веществ по-разному

4. При нагревании воды молекулы движутся:

1) с той же скоростью; 2) медленнее; 3) быстрее; 4) зависит от

Рода вещества

5. Скорость движения молекул кислорода уменьшилась. При этом

Температура …

1) не изменилась; 2) понизилась; 3) повысилась; 4) правильного

Ответа нет

6. Если перелить воду из тарелки в стакан, то …

1) изменится форма и объем воды; 2) форма изменится, объем со-

Хранится; 3) форма сохранится, объем изменится; 4) сохранится

Объем и форма

7. В какой воде диффузия происходит медленнее?

1) в холодной; 2) в горячей; 3) одинаково; 4) диффузия в воде не

Происходит

8. В каких веществах диффузия происходит быстрее при одинако-

Вых условиях?

1) в газообразных; 2) в жидких; 3) в твердых; 4) одинаково во

Всех веществах

9. Молекулы вещества расположены на малых расстояниях, сильно

Притягиваются и колеблются около положения равновесия. Это

Вещество …

1) газообразное; 2) жидкое; 3) твердое; 4) такого вещества не

Существует

В. В. Махрова, ГС(К)ОУ С(К)ОШ (VII вида) N 561, Санкт – Петербург

Трехмерное состояние жидкой воды трудно исследовать, но многое было изучено путем анализа структуры кристаллов льда. Четыре соседних атома кислорода с водородным взаимодействием занимают вершины тетраэдра (тетра = четыре, гедрон = плоскость). Средняя энергия, необходимая для разрушения подобной связи во льду, оценивается в 23 кДж / моль -1 .

Способность молекул воды образовывать данное количество водородных цепей, а также указанная прочность создает необычно высокую температуру плавления. Когда он тает, то удерживается жидкой водой, структура которой нерегулярна. Большая часть водородных связей искажается. Для разрушения кристаллической решетки льда с водородной связью требуется большая масса энергии в виде тепла.

Особенности появления льда (Ih)

Многие из обывателей задаются вопросом о том, какая кристаллическая решетка у льда. Необходимо отметить, что плотность большинства веществ возрастает при замораживании, когда молекулярные движения замедляются и образуются плотно упакованные кристаллы. Плотность воды также увеличивается, когда она остывает до достижения максимума при 4°C (277K). Затем, когда температура опускается ниже этого значения, она расширяется.

Это увеличение обусловлено образованием открытого водородно-связанного кристалла льда с его решеткой и меньшей плотностью, в котором каждая молекула воды жестко связана указанным выше элементом и четырьмя другими значениями, и при этом двигается достаточно быстро, чтобы обладать большей массой. Поскольку происходит подобное действие, жидкость замерзает сверху вниз. Это имеет важные биологические результаты, вследствие которых слой льда на пруду изолирует живых существ подальше от сильного холода. Кроме того, два дополнительных свойства воды связаны с его водородными характеристиками: удельной теплоемкостьюи испарением.

Детальное описание структур

Первый критерий представляет собой количество, необходимое для повышения температуры 1 грамма вещества на 1°С. Для повышения градусов воды требуется относительно большая часть тепла, потому что каждая молекула участвует в многочисленных водородных связях, которые должны быть разрушены, чтобы кинетическая энергия увеличивалась. Кстати, обилие H 2 O в клетках и тканях всех крупных многоклеточных организмов означает, что флуктуация температуры внутри клеток сведена к минимуму. Эта особенность имеет решающее значение, поскольку скорость большинства биохимических реакций чувствительна.

Также значительно выше, чем у многих других жидкостей. Для преобразования этого тела в газ требуется большое количество тепла, потому что водородные связи должны быть разрушены, чтобы молекулы воды могли дислоцироваться друг от друга и войти в указанную фазу. Изменяемые тела представляют собой постоянные диполи и могут взаимодействовать с другими подобными соединениями и теми, что ионизируются и растворяются.

Иные вещества, указанные выше, могут вступать в контакт только при наличии полярности. Именно такое соединение участвует в строении этих элементов. Кроме того, оно может выравниваться вокруг этих частиц, образованных из электролитов, так что отрицательные атомы кислорода молекул воды ориентированы на катионы, а положительные ионы и атомы водорода, ориентированы на анионы.

В образуются, как правило, молекулярные кристаллические решетки и атомные. То есть если йод построен таким образом, что в нем присутствует I 2, то в твердом диоксиде углерода, то есть в сухом льде, в узлах кристаллической решетки находятся молекулы CO 2 . При взаимодействии с подобными веществами, ионную кристаллическую решетку имеет лед. Графит, например, обладающий атомной структурой, в основе которой углерод, не способен ее менять, также как и алмаз.

Что происходит, когда кристалл столовой соли растворяется в воде: полярные молекулы притягиваются к заряженным элементам в кристалле, что приводит к образованию подобных частиц натрия и хлорида на его поверхности, в результате эти тела дислоцируются друг от друга, и он начинает растворяться. Отсюда можно наблюдать, что лед имеет кристаллическую решетку с ионной связью. Каждый растворенный Na + притягивает отрицательные концы нескольких молекул воды, тогда как каждый растворенный Cl - притягивает положительные концы. Оболочка, окружающая каждый ион, называется сферой спасения и, обычно, содержит несколько слоев частиц растворителя.

Говорят, что переменные или ион, окруженные элементами, являются сульфатированными. Когда растворителем выступает вода, такие частицы гидратируются. Таким образом, любая полярная молекула имеет тенденцию к сольватации элементами жидкого тела. У сухого льда тип кристаллической решетки образует в агрегатном состоянии атомные связи, которые неизменны. Другое дело кристаллический лед (замороженная вода). Ионные органические соединения, такие как карбоксилазы и протонированные амины, должны обладать растворимостью в гидроксильной и карбонильной группах. Частицы, содержащиеся в таких структурах, двигаются между молекулами, причем их полярные системы образуют водородные связи с этим телом.

Конечно, количество последних указанных групп в молекуле влияет на ее растворимость, которая также зависит от реакции различных структур в элементе: например, одно-, двух- и трех углеродные спирты смешиваются с водой, но более крупные углеводороды с одиночными гидроксильными соединениями гораздо менее разбавляемы в жидкости.

Шестиугольный Ih схож по форме с атомной кристаллической решеткой. У льда и всего естественного снега на Земле она выглядит именно так. Об этом свидетельствует симметрия кристаллической решетки льда, выращенная из водяного пара (то есть снежинок). Находится в космической группе P 63/мм с 194; D 6h, класса Лауэ 6/мм; аналогичный β-, имеющей кратную 6-ти винтовую ось (вращение вокруг в дополнение к сдвигу вдоль нее). Он обладает довольно открытой структурой с низкой плотностью, где эффективность низкая (~ 1/3) по сравнению с простыми кубическими (~ 1/2) или гранецентрированными кубическими (~ 3/4) структурами.

По сравнению с обычным льдом, кристаллическая решетка сухого льда, связанная молекулами CO 2 , статична и меняется лишь при распаде атомов.

Описание решеток и входящих в них элементов

Кристаллы можно рассматривать, как кристаллические модели, состоящие из листов, расположенных друг над другом. Водородная связь упорядочена, тогда как в действительности она случайна, поскольку протоны могут перемещаться между молекулами воды (льда) при температурах выше примерно 5 К. Действительно, вполне вероятно, что протоны ведут себя, как квантовая жидкость в постоянном туннелированном потоке. Это усиливается рассеянием нейтронов, показывающих плотность их рассеяния на полпути между атомами кислорода, что указывает на локализацию и согласованное движение. Здесь наблюдается схожесть льда с атомной, молекулярной кристаллической решеткой.

Молекулы имеют ступенчатое расположение водородной цепи по отношению к трем своим соседям в плоскости. Четвертый элемент имеет затмеваемое расположение водородной связи. Существует небольшое отклонение от идеальной шестиугольной симметрии, как на 0,3% короче в направлении этой цепи. Все молекулы испытывают одинаковые молекулярные среды. Внутри каждой "коробки" достаточно места для удержания частиц интерстициальной воды. Хотя это, как правило, не считается, недавно они были эффективно обнаружены нейтронной дифракцией порошкообразной кристаллической решеткой льда.

Изменение веществ

Шестиугольное тело имеет тройные точки с жидкой и газообразной водой 0,01 ° C, 612 Па, твердыми элементами - три -21,985 ° C, 209,9 МПа, одиннадцать и два -199,8 ° C, 70 МПа, а также -34,7 ° C, 212,9 МПа. Диэлектрическая проницаемость гексагонального льда составляет 97,5.

Кривая плавления этого элемента дается МПа. Уравнения состояния доступны, кроме них некоторые простые неравенства, связывающие изменение физических свойств с температурой гексагонального льда и его водных суспензий. Твердость колеблется в зависимости от градусов, возрастающих примерно от или ниже гипса (≤2) при 0°С, до уровня полевого шпата (6 по при -80 ° С, аномально большое изменение абсолютной твердости (> 24 раза).

Шестиугольная кристаллическая решетка льда образует гексагональные пластины и столбцы, где верхняя и нижняя грани являются базальными плоскостями {0 0 0 1} с энтальпией 5,57 мкДж · см -2 , а другие эквивалентные боковые называются частями призмы {1 0 -1 0} с 5,94 мкДж · см -2 . Вторичные поверхности {1 1 -2 0} с 6.90 μJ ˣ см -2 могут быть сформированы по плоскостям, образованными сторонами структур.

Подобное строение показывает аномальное уменьшение теплопроводности с увеличением давления (как и кубический, и аморфный лед низкой плотности), но отличается от большинства кристаллов. Это связано с изменением водородной связи, уменьшающей поперечную скорость звука в кристаллической решетке льда и воды.

Существуют методы, описывающие, как подготовить большие образцы кристалла и любую желаемую поверхность льда. Предполагается, что водородная связь на поверхности гексагонального исследуемого тела будет более упорядоченной, чем внутри объемной системы. Вариационная спектроскопия с генерацией по частоте колебаний с фазовой решеткой показала, что существует структурная асимметрия между двумя верхними слоями (L1 и L2) в подповерхностной HO цепи базальной поверхности гексагонального льда. Принятые водородные связи в верхних слоях шестиугольниках (L1 O ··· HO L2) сильнее, чем принятые во втором слое к верхнему накоплению (L1 OH ··· O L2). Доступны интерактивные структуры гексагонального льда.

Особенности развития

Минимальное количество молекул воды, необходимых для зарождения льда, примерно 275 ± 25, как и для полного икосаэдрического кластера 280. Образование происходит с коэффициентом 10 10 на поверхности раздела воздух-вода, а не в объемной воде. Рост кристаллов льда зависит от разных темпов роста различных энергий. Вода должна быть защищена от замерзания при крио консервировании биологических образцов, пищи и органов.

Обычно это достигается быстрыми скоростями охлаждения, использованием небольших образцов и крио консерватора, а также увеличением давления для образования зародышей льда и предотвращения повреждения клеток. Свободная энергия льда / жидкости увеличивается от ~ 30 мДж/м 2 при атмосферном давлении до 40 мДж/м -2 при 200 МПа, что указывает на причину, по которой происходит подобный эффект.

В качестве альтернативы они могут расти быстрее с поверхностей призмы (S2), на случайно нарушенной поверхности быстрозамороженных или взволнованных озер. Рост от граней {1 1 -2 0}, по крайней мере, такой же, но превращает их в основания призмы. Данные о развитии кристалла льда были полностью исследованы. Относительные скорости роста элементов разных граней зависят от способности образовывать большую степень совместной гидратации. Температура (низкая) окружающей воды определяет степень разветвления в кристалле льда. Рост частиц ограничивается скоростью диффузии при низкой степени переохлаждения, то есть <2 ° C, что приводит к большему их количеству.

Но ограничено кинетикой развития при более высоких уровнях понижения градусов >4°C, что приводит к игольчатому росту. Эта форма схожа со строением сухого льда (имеет кристаллическую решетку с шестиугольной структурой), различными характеристиками развития поверхности и температурой окружающей (переохлажденной) воды, которая находится за плоскими формами снежинок.

Зарождение льда в атмосфере глубоко влияет на образование и свойства облаков. Полевые шпаты, обнаруженные в пустынной пыли, которая попадает в атмосферу миллионами тонн в год, являются важными образователями. Компьютерное моделирование показало, что это связано с зарождением плоскостей призматических кристаллов льда на плоскостях поверхности высоких энергий.

Некоторые другие элементы и решетки

Растворенные вещества (за исключением очень небольшого гелия и водорода, которые могут входить в междоузлия) не могут быть включены в структуру Ih при атмосферном давлении, но вытесняются на поверхность или аморфный слой между частицами микрокристаллического тела. В узлах кристаллической решетки сухого льда находятся некоторые иные элементы: хаотропные ионы, такие как NH 4 + и Cl - , которые включены в более легкое замораживание жидкости, чем другие космотропные, такие как Na + и SO 4 2- , поэтому удаление их невозможно, ввиду того, что они образуют тонкую пленку из оставшейся жидкости между кристаллами. Это может привести к электрической зарядке поверхности из-за диссоциации поверхностной воды, уравновешивающей оставшиеся заряды (что также может привести к магнитному излучению) и изменению рН остаточных жидких пленок, например, NH 4 2 SO 4 становится более кислым и NaCl становится более щелочным.

Они перпендикулярны граням кристаллической решетке льда, показывающей присоединенный следующий слой (с атомами О-черный). Им характерна медленно растущая базальная поверхность {0 0 0 1}, где прикрепляются только изолированные молекулы воды. Быстро растущая {1 0 -1 0} поверхность призмы, где пары вновь присоединенных частиц могут связываться друг с другом водородом (одна его связь/две молекулы элемента). Наиболее быстро растущая грань {1 1 -2 0} (вторичная призматика), где цепочки вновь присоединенных частиц могут взаимодействовать друг с другом водородной связью. Одна ее цепочка/ молекула элемента - это форма, образующая хребты, которые делят и поощряют превращение в две стороны призмы.

Энтропия нулевой точки

k B ˣ Ln (N

Ученые и их труды в этой сфере

Может быть определена, как S 0 = k B ˣ Ln (N E0), где k B - это постоянная Больцмана, N E - эточисло конфигураций при энергии E, а E0 - наименьшая энергия. Это значение для энтропии гексагонального льда при нулевом кельвине не нарушает третьего закона термодинамики «Энтропия идеального кристалла при абсолютном нуле ровно равна нулю», поскольку эти элементы и частицы не идеальны, имеют неупорядоченное водородное связывание.

В этом теле водородная связь является случайной и быстро меняющейся. Эти структуры не точно равны по энергии, а распространяются на очень большое количество энергетически близких состояний, подчиняются «правилам льда». Энтропия нулевой точки - это беспорядок, который оставался бы, даже если материал мог бы быть охлажден до абсолютного нуля (0 K = -273,15 ° C). Порождает экспериментальную путаницу для гексагонального льда 3,41 (± 0,2) ˣ моль -1 ˣ K -1 . Теоретически, можно было бы вычислить нулевую энтропию известных ледяных кристаллов с гораздо большей точностью (пренебрегая дефектами и разбросом энергетических уровней), чем определить ее экспериментально.

Хотя порядок протонов в объемном льду не упорядочен, поверхность, вероятно, предпочитает порядок указанных частиц в виде полос свисающих Н-атомов и О-одиночных пар (нулевая энтропия с упорядоченными водородными связями). Найден беспорядок нулевой точки ZPE, J ˣ mol -1 ˣ K -1 и других. Из всего вышеизложенного видно и понятно, какие типы кристаллических решеток характерны для льда.

Из 14 известных на сегодняшний день форм твердой воды в природе мы встречаем только одну — лед. Остальные образуются в экстремальных условиях и для наблюдений вне специальных лабораторий недоступны. Самое интригующее свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки фирна на снежном поле или же гигантских ледниковых масс.

В небольшом японском городе Кага, расположенном на западном берегу острова Хонсю, есть необычный музей. Снега и льда. Основал его Укихиро Накайя — первый человек, который научился выращивать в лаборатории искусственные снежинки, такие же красивые, как и те, что падают с неба. В этом музее посетителей со всех сторон окружают правильные шестиугольники, потому что именно такая — гексагональная — симметрия свойственна кристаллам обычного льда (кстати, греческое слово kristallos, собственно, и означает «лед»). Она определяет многие уникальные его свойства и заставляет снежинки, при всем бесконечном их разнообразии, расти в форме звездочек с шестью, реже — тремя или двенадцатью лучами, но никогда — с четырьмя или пятью.

Молекулы в ажуре

Разгадка структуры твердой воды кроется в строении ее молекулы. Н2О можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В центре находится кислород, в двух вершинах — по водороду, точнее — протону, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, отчего их называют неподеленными.

При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, которые не позволяют при замерзании создавать плотную структуру. Этот невидимый каркас из водородных связей располагает молекулы в виде ажурной сетки с полыми каналами. Стоит лед нагреть, как кружево рушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — вот почему вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0°С, — самое привычное, но все еще не до конца понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а вот атомы водорода занимают самые разные положения вдоль связей. Такое поведение атомов вообще-то нетипично — как правило, в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования ажурной структуры льда.

К «странностям» льда относят и генерацию электромагнитного излучения его растущими кристаллами. Давно известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти, проще говоря, вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. Примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Неправильный лед

В твердом состоянии вода насчитывает, по последним данным, 14 структурных модификаций. Есть среди них кристаллические (их большинство), есть аморфные, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Например, при температуре ниже –110°С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110°, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предсказание 40-летней давности о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень велика, и собраться вместе молекулам сверхчистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Помог катализатор — соляная кислота, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но их можно поискать на замерзших спутниках других планет.

Комиссия решила так

Снежинка — это монокристалл льда, вариация на тему гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются самые пытливые умы. Астроном Иоганн Кеплер в 1611 году написал целый трактат «О шестиугольных снежинках». В 1665 году Роберт Гук в огромном томе зарисовок всего, что он увидел с помощью микроскопа, опубликовал множество рисунков снежинок самой разной формы. Первую удачную фотографию снежинки под микроскопом сделал в 1885 году американский фермер Уилсон Бентли. С тех пор он уже не мог остановиться. До конца жизни, сорок с лишним лет, Бентли фотографировал их. Более пяти тысяч кристаллов, и ни одного одинакового.

Самые знаменитые последователи дела Бентли — это уже упомянутый Укихиро Накайя и американский физик Кеннет Либбрехт . Накайя впервые предположил, что величина и форма снежинок зависят от температуры воздуха и содержания в нем влаги, и блистательно подтвердил эту гипотезу экспериментально, выращивая в лаборатории кристаллы льда разной формы. А Либбрехт у себя в и вовсе стал выращивать снежинки на заказ — заранее заданной формы.

Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку.

Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинают расти совершенно одинаковые ледяные иголочки — боковые отростки. Одинаковые просто потому, что температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки — веточки. Подобные кристаллы так и называют дендритами, то есть похожими на дерево.

Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. Хотя теоретически в одном облаке на одной высоте они могут «зародиться» одинаковыми. Но путь до земли у каждой свой, довольно долгий — в среднем снежинка падает со скоростью 0,9 км в час. А значит, у каждой — своя история и своя окончательная форма. Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом.

Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.

Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве, деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.

Нам на Земле довольно и одной твердой модификации воды — обычного льда. Он буквально пронизывает все области обитания или пребывания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Горные ледники , ледяные покровы акваторий, вечная мерзлота, да и просто сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. А лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

Ольга Максименко, кандидат химических наук

Введение

1. Строение молекул воды

2. Структура воды в трех ее агрегатных состояниях

3. Разновидности воды

4. Аномальные свойства воды

5. Фазовые превращения и диаграмма состояния воды

6. Модели структуры воды и льда

7. Агрегатные виды льда

Заключение

Список литературы


Введение

Вода это самое важное вещество на Земле без которого не может существовать ни один живой организм и не могут протекать ни какие биологические, химические реакции, и технологические процессы.

Воды(оксид водорода) – это жидкость без запаха, вкуса и цвета (в толстых слоях голубоватая); Н 2 О, мол. м. 18,016, простейшее устойчивое соед. водорода с кислородом.

Вода является одним из самых распространенных в природе веществ. Она покрывает около 3/4 всеи земной поверхности, составляя основу океанов, морей, озер, рек, фунтовых вод и болот. Большое количество воды находится также в атмосфере. Растения и живые организмы содержат в своем составе 50-96 % воды.

Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников. Кол-во воды на пов-сти Земли оценивается в 1,39*10 18 т, большая часть ее содержится в морях и океанах. Кол-во доступных для использования пресных вод в реках, озерах, болотах и водохранилищах составляет 2*10 4 т. Масса ледников Антарктики, Антарктиды и высокогорных районов 2,4*10 16 т (общая масса распределенных по поверхности Земли снега и льда достигает примерно 2,5-3,010 16 т, что составляет всего лишь 0,0004% массы всей нашей планеты. Однако, такого количества достаточно, чтобы покрыть всю поверхность Земного шара 53 метровым слоем, а если бы вся эта масса вдруг растаяла, превратившись в воду, то уровень Мирового Океана поднялся бы по сравнению с нынешним примерно на 64 метра.), примерно столько же имеется подземных вод, причем только небольшая их часть - пресные. В атмосфере находится ок. 1,3*10 13 т воды. Вода входит в состав многих минералов и горных пород (глина, гипс и др.), присутствует в почве, является обязательным компонентом всех живых организмов.

Плотность H 2 O = 1 г/см3 (при 3,98 градусах), t пл. = 0 градусов, а t кип = 100 градусов. Теплоемкость воды составляет 4,18 Дж/(г/К) Mr (H 2 O) = 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Вода – это единственное вещество в природе, которое в земных условиях существует во всех трёх агрегатных состояниях: Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находится вода, пропитывающая почву и горные породы

От воды зависит климат. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У неё очень большая теплоёмкость. Нагреваясь, она поглощает тепло; остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла и тем самым "выравнивает" климат. А от космического холода предохраняет Землю те молекулы воды, которые рассеяны в атмосфере – в облаках и в виде паров… без воды обойтись нельзя – это самое важное вещество на Земле.

Вода – вещество привычное и необычное. Известный советский учёный

академик И. В. Петрянов свою научно-популярную книгу о воде назвал "самое необыкновенное вещество в мире". А "Занимательная физиология", написанная доктором биологических наук Б. Ф. Сергеевым, начинается с главы о воде – "Вещество, которое создало нашу планету".


1. Строение молекулы воды

Из всех распространенных жидкостей вода - наиболее универсальный растворитель, жидкость с максимальными величинами поверхностного натяжения, диэлектрической постоянной, теплоты парообразования и наивысшей (после аммиака) теплотой плавления. В отличие от большинства веществ вода, замерзая при низком давлении, расширяется.

Эти специфические свойства воды связаны с особым строением ее молекулы. Химическая формула воды Н 2 0 обманчиво проста. В молекуле воды ядра атомов водорода расположены несимметрично по отношению к ядру атома кислорода и электронам. Если атом кислорода находится в центре тетраэдра, центры масс двух атомов водорода будут в углах тетраэдра, а центры зарядов двух пар электронов займут два других угла (рис.1.1). Таким образом, четыре электрона располагаются на возможно наибольшем расстоянии как от ядра атома кислорода, так и от ядер атомов водорода, при котором они еще притягиваются ядром атома кислорода. Другие шесть электронов молекулы воды расположены так: четыре электрона находятся в положении, обеспечивающем химическую связь между ядрами атомов кислорода и водорода, а два других расположены вблизи ядра атома кислорода.

Ассиметричное расположение атомов молекулы воды обусловливает неравномерное распределение электрических зарядов в ней, что делает молекулу воды полярной. Такое строение молекулы воды обусловливает притяжение молекул воды друг к другу в результате образования между ними водородных связей. Расположение атомов водорода и кислорода, внутри образовавшихся агрегатов молекул воды сходно с расстановкой атомов кремния и кислорода в кварце. Это относится ко льду и в меньшей мере к жидкой воде, агрегаты молекул которой всегда находятся в стадии перераспределения. При охлаждении воды ее молекулы группируются в агрегаты, которые постепенно увеличиваются и становятся все более устойчивыми по мере приближения к температуре 4° С, когда вода достигает максимальной плотности. При этой температуре вода еще не имеет жесткой структуры и наряду с длинными цепочками ее молекул существует большое количество отдельных молекул воды. При дальнейшем охлаждении цепочки молекул воды растут за счет присоединения к ним свободных молекул, в результате чего плотность воды уменьшается. Когда вода превратится в лед, все ее молекулы входят в более или менее жесткую структуру в виде незамкнутых цепочек, образующих кристаллы.

Рис.1.1 Строение молекулы воды

Взаимное проникновение атомов водорода и кислорода. Ядра двух атомов водорода и две пары электронов находятся в углах тетраэдра: в центре расположено ядро атома кислорода.

Высокие величины поверхностного натяжения и теплоты парообразования воды объясняются тем, что для отделения молекулы воды от группы молекул требуется относительно большая затрата энергии. Стремление молекул воды устанавливать водородные связи и их полярность объясняют необычно высокую растворяющую способность воды. Некоторые соединения, такие, как сахара и спирты, удерживаются в растворе благодаря водородным связям. Соединения, обладающие высокой степенью ионизации вводе, например хлористый натрий, удерживаются в растворе вследствие того, что ионы с противоположными зарядами нейтрализуются группами ориентированных молекул воды.

Другая особенность молекулы воды состоит в том, что как атомы водорода, так и атомы кислорода могут иметь различные массы при одинаковом заряде ядра. Разновидности химического элемента с различными атомными весами называются изотопами этого элемента. Молекула воды обычно образуется водородом с атомным весом 1 (Н 1) и кислородом с атомным весом 16 (О 16). Более 99% атомов воды относится к этим изотопам. Кроме того, существуют следующие изотопы: Н 2 , H 3 , О 14 , О 15 , О 17 О 18 , О 19 . Многие из них скапливаются в воде в результате ее частичного испарения и вследствие своей большой массы. Изотопы Н 3 , О 14 , О 15 , О 19 радиоактивны. Наиболее распространен из них тритий Н 3 , образующийся в верхних слоях атмосферы под воздействием космических лучей. Этот изотоп накопился также в результате ядерных взрывов за последние несколько лет. На основании этих и других фактов относительно изотопов путем анализа изотопного состава воды можно частично раскрыть историю некоторых природных вод. Так, содержание тяжелых изотопов в поверхностных водах свидетельствует о длительном испарении воды, которое происходит, например, в Мертвом море, Большом Соленом озере и в других бессточных водоемах. Повышенное содержание трития в подземных водах могло бы означать, что эти воды метеорного происхождения с большой скоростью циркуляции, потому что период полураспада этого изотопа всего лишь 12,4 лет. К сожалению, изотопный анализ слишком дорог и по этой причине не может быть широко применен в исследованиях природных вод

Молекула воды H 2 О построена в виде треугольника: угол между двумя связками кислород – водород 104 градуса. Но поскольку оба водородных атома расположены по одну сторону от кислорода, электрические заряды в ней рассредоточиваются. Молекула воды полярная, что является причиной особого взаимодействия между разными её молекулами.

Атомы водорода в молекуле H 2 О, имея положительный частичный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной. Она объединяет молекулы H 2 О в своеобразные полимеры пространственного строения; плоскость, в которой расположены водородные связи, перпендикулярны плоскости атомов той же молекулы H 2 О. Взаимодействием между молекулами воды и объясняются в первую очередь незакономерно высокие температуры её плавления и кипения. Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему так велика теплоёмкость воды.

Как и большинство веществ, вода состоит из молекул, а последние из атомов.

Понятие молекулы (и производные от него представления о молекулярном строении вещества, структуры собственно молекулы) позволяет понимать свойства веществ создающих мир. Современные, как и ранние, физико-химические исследования опираются и базируются на грандиозном открытие об атомно-молекулярном строении вещества. Молекула – единая «деталь» всех веществ, существование которой предположил ещё Демокрит. Потому именно её структура и взаимосвязь с другими молекулами (образуя определенное строение и состав) и определяет/объясняет все различия между веществами, их видом и свойствами.

Сама молекула, будучи не самой мельчайшей составной частью вещества (коей является атом) имеет определенную структуру, свойства. Определяется структура молекулы числом вхожих в неё определенных атомов и характером связи (ковалентной) между ними. Состав этот неизменен, даже если вещество преобразуется в другое состояние(как примеру, происходит с водой – об этом пойдет речь дальше).

Молекулярное строение вещества фиксируется формулой, которая сообщает информацию об атомах, их количестве. Кроме того, молекулы составляющие вещество/тело не статичны: и сами являются подвижными – атомы вращаются, взаимодействуя между собой (притягиваются/отталкиваются).

Характеристики воды, её состояния

Состав такого вещества, как вода (равно как и её химическая формула) знаком каждому. Каждую её молекулу составляют три атома: атом кислорода, обозначающийся буквой «О», и атомы водорода – латинская «Н», в количестве 2-х. Форма молекулы воды не симметрична (схожа с равнобедренным треугольником).

Вода, как вещество, составляющие её молекулы, реагирует на внешнюю «обстановку», показатели окружающей среды — температуру, давление. Зависимо от последних вода способна изменять состояние, которых три:

  1. Наиболее привычное, естественное для воды состояние жидкое. Молекулярная структура (дигидроль) своеобразного порядка, при котором одиночные молекулы заполняют (водородными связями) пустоты.
  2. Состояние пара, при котором молекулярная структура (гидроль) представлена одиночными молекулами между которыми не образуются водородные связи.
  3. Твердое состояние (собственно лед), имеет молекулярную структуру (тригидроль) с прочными и устойчивыми водородными связями.

Помимо данных различий, естественно, разнятся и способы «перехода» вещества из одного состояния (жидкого) в другие. Эти переходы и трансформируют вещество, и провоцируют передачу энергии (выделение/поглощение). Среди них есть процессы прямые – преобразование жидкой воды в пар (испарение), в лед (замерзание) и обратные – в жидкость из пара (конденсация), из льда (таяние). Также и состояния воды — парообразное и лед — могут трансформироваться друг в друга: возгонка – лед в пар, сублимация – обратный процесс.

Специфичность льда как состояния воды

Широко известно, что лед замерзает (трансформируется из воды) при пересечении температурой в сторону уменьшения границы в ноль градусов. Хотя, в этом всем понятном явлении, есть свои нюансы. К примеру, состояние льда неоднозначно, различны его виды, модификации. Отличаются они первоочередно условиями, при которых возникают – температурой, давлением. Таких модификаций насчитывается аж пятнадцать.

Лед в разных своих видах имеет различное молекулярное строение (молекулы же неотличимы от молекул воды). Природный и естественный лед, в научной терминологии обозначающийся как лед Ih — вещество с кристаллической структурой. То есть, каждая молекула с четырьмя окружающими её «соседками» (расстояние между всеми равное) создают геометрическую фигуру тетраэдр. Другие фазы льда обладают более сложной структурой, к примеру высокоупорядоченная структура тригонального, кубического или моноклинного льда.

Основные отличия льда от воды на молекулярном уровне

Первое и напрямую не относящееся к молекулярному строению воды и льда различие между ними – показатель плотности вещества. Кристаллическая структура, присущая льду, образовываясь, способствует одновременному уменьшению плотности (с показателя почти в 1000 кг/м³ до 916,7 кг/м³). А это стимулирует увеличение объема на 10%.


Основное же отличие в молекулярном строении этих агрегатных состояний воды (жидкого и твердого) в количестве, виде и силе водородных связей между молекулами . Во льду же (твердом состоянии) ими объединены пять молекул, а собственно связи водородные прочнее.

Сами молекулы веществ воды и льда, как упоминалось ранее, одинаковы. Но в молекулах льда атом кислорода (для создания кристаллической «решетки» вещества) образовывает водородные связи (две) с молекулами-«соседками».

Отличает вещество воды в разных её состояниях (агрегатных) не только структура расположения молекул (молекулярное строение), но и движение их, сила взаимосвязи/притяжения между ними. Молекулы воды в жидком состоянии достаточно слабо притягиваются, обеспечивая текучесть воды. В твердом же льду наиболее сильно притяжение молекул, потому и мала их двигательная активность (она обеспечивает постоянство формы льда).