Момент инерции круга. Момент инерции для чайников: определение, формулы, примеры решения задач. Расчет винтовых цилиндрических пружин

Базовый курс лекций по сопромату, теория, практика, задачи.
1. Геометрические характеристики сечений.

1.3. Моменты инерции простых сечений.

1. Прямоугольник (рис. 1.5,а). Вычислим момент инерции сечения относительно оси Х0 , проходящей через центр тяжести параллельно основанию.

За dA примем площадь бесконечно тонкого слоя dA = bdy. Тогда

Итак,
(1.11)

Аналогично, получим
(1.12)

2. Круг (рис. 1.5,б). Сначала определим полярный момент инерции относительно центра круга

За dA принимаем площадь бесконечно тонкого кольца толщиной dp

тогда

Следовательно,
(1.13)

Теперь легко найдем Ixo . Действительно, для круга согласно формуле (1.9.), имеем Iр = 2Iхо = 2Iуо , откуда
(1.14)

2. Кольцо (рис. 1.5,в). Осевой момент инерции в этом случае равен разности моментов инерции внешнего и внутреннего кругов
(1.15)
где c = d/D.

Аналогично полярный момент инерции
(1.16)

2. Треугольник (рис. 1.5,г). Определим момент инерции относительно оси x1 , параллельной основанию и проходящей через вершину треугольника

За dA примем площадь бесконечно тонкой трапеции KBDE, площадь которой можно считать равной площади прямоугольника:

DA = by dy,

Где by - длина прямоугольника.

ОПРЕДЕЛЕНИЕ

Осевым (или экваториальным) моментом инерции сечения относительно оси называется величина, которую определяют как:

Выражение (1) обозначает, для вычисления осевого момента инерции берется по всей площади S сумма произведений бесконечно малых площадок () умноженных на квадраты расстояний от них до оси вращения:

Сумма осевых моментов инерции сечения относительно взаимно перпендикулярных осей (например, относительно осей X и Y в декартовой системе координат) дают полярный момент инерции () относительно точки пересечения этих осей:

ОПРЕДЕЛЕНИЕ

Полярным моментом инерции называют момент инерции сечением по отношению к некоторой точке.

Осевые моменты инерции всегда больше нуля, так как в их определениях (1) под знаком интеграла стоят величина площади элементарной площадки (), всегда положительная и квадрат расстояния от этой площадки до оси.

Если мы имеем дело с сечением сложной формы, то часто при расчетах используют то, что осевой момент инерции сложного сечения по отношению к оси равен сумме осевых моментов инерции частей этого сечения относительно той же оси. Однако следует помнить, что нельзя суммировать моменты инерции, которые найдены относительно разных осей и точек.

Осевой момент инерции относительно оси проходящей через центр тяжести сечения имеет наименьшее значение из всех моментов относительно параллельных с ней осей. Момент инерции относительно любой оси () при условии ее параллельности с осью, проходящей через центр тяжести равен:

где - момент инерции сечения относительно оси проходящей через центр тяжести сечения; - площадь сечения; - расстояние между осями.

Примеры решения задач

ПРИМЕР 1

Задание Чему равен осевой момент инерции равнобедренного треугольного сечения относительно оси Z, проходящей через центр тяжести () треугольника, параллельно его основанию? Высота треугольника равна .

Решение Выделим на треугольном сечении прямоугольную элементарную площадку (см. рис.1). Она находится на расстоянии от оси вращения, длина одной ее стороны , другая сторона . Из рис.1 следует, что:

Площадь выделенного прямоугольника с учетом (1.1) равна:

Для нахождения осевого момента инерции используем его определение в виде:

Ответ

ПРИМЕР 2

Задание Найдите осевые моменты инерции относительно перпендикулярных осей X и Y (рис.2) сечения в виде круга диаметр которого равен d.

Решение Для решения задачи удобнее начать с нахождения полярного момента относительно центра сечения (). Все сечение разобьем на бесконечно тонкие кольца толщиной , радиус которых обозначим . Тогда элементарную площадь найдем как:

Рассматривая в предыдущих разделах простейшие виды деформаций - осевое растяжение и сжатие, смятие, скалывание - мы выяснили, что их сопротивление действующей силе пропорционально только размерам площади поперечного сечения элемента, на который действует сила. Так, при одинаковой площади сечения, одном и том же материале и одинаковой силе, действующей на каждый из стержней, изображенный на рис. 9.14, в них возникнут равные напряжения.
Переходя далее к изучению других более сложных видов деформаций (кручение, изгиб, внецентренное сжатие и др.) мы увидим, что в этих случаях сопротивление элемента конструкции внешним силам зависит не только от площади его поперечного сечения, но и от распределения этой площади в плоскости сечения, т. е. от формы сечения.
Из обыденного опыта ясно, что согнуть стержень 4 в вертикальном направлении труднее, чем стержень 5, а стержень 6 имеет еще большую жесткость, хотя площади сечений всех этих стержней одинаковые (рис. 9.14).

Параметрами, характеризующими геометрические свойства различных плоских фигур, кроме площади, являются: статические моменты, моменты инерции, моменты сопротивления и радиусы инерции.
Статический момент площади . Представим брус с произвольной формой поперечного сечения площадью F , в плоскости которого проведена ось х (рис. 9.15). Выделим элемент площади dF , расположенный на расстоянии у от оси х .. Статическим моментом элементарной площадки , относительно оси х называют произведение этой площадки на ее расстояние до оси:


Статический момент всей площади F относительно оси х равен сумме статических моментов всех элементарных площадок, которые могут быть выделены на рассматриваемой площади:


Из теоретической механики известно, что координаты центра тяжести площади фигуры определяют по формулам:

Поэтому

Следовательно, статический момент фигуры площадью F относительно какой-нибудь оси равен произведению площади на расстояние центра тяжести фигуры до этой оси. Размерность статического момента - единица длины в кубе ( , ).
Оси, проходящие через центр тяжести сечения, называют центральными.Если фигура имеет ось симметрии, то последняя всегда проходит через центр тяжести фигуры, т. е. оси симметрии одновременно являются и центральными осями.
Будем также иметь в виду, что статический момент сложной фигуры относительно некоторой оси равен сумме статических моментов относительно той же оси простых фигур, на которые может быть разбита исходная сложная фигура:

Рис. 9.16. Схема к определению координат центра тяжести сложной фигуры.

Для решения этой задачи выберем две оси координат х и у , совпадающие со сторонами фигуры. Разобьем фигуру, все размеры которой должны быть известны, на элементарные части - прямоугольники - координаты центров тяжести которых очевидны, так как эти части симметричны. Составим теперь выражения для вычисления статического момента всей площади, например относительно оси у . Это можно сделать двумя способами:
а) взять сумму статических моментов отдельных площадей

В этих выражениях F - площадь всей фигуры; - координата ее центра тяжести; - площади отдельных частей фигуры, а - координаты их центров тяжести.
Приравнивая друг к другу написанные выше формулы, получим уравнение с одной неизвестной :

Аналогично этому расстояние центра тяжести фигуры от оси х может быть выражено так:

Составляя интеграл, в котором подынтегральное выражение представляет собой произведение элемента площади на квадрат расстояния до начала координат (рис. 9.17), получим полярный момент инерции :

Отметим еще одну характеристику, в которой площадка dF умножается на произведение координат


Эту величину называют центробежным моментом инерции . Приведенные моменты инерции измеряются в единицах длины" взятой в четвертой степени (, ).
Осевые и полярные моменты инерции фигуры - величины положительные и не могут быть равными нулю. Центробежный момент инерции в зависимости от положения осей может быть положительным или отрицательным, а также равным нулю. Две взаимно перпендикулярные оси, относительно которых центробежный момент инерции равен нулю, называют главными осями инерции и обозначаются . Для симметричной фигуры ось симметрии является и главной осью.
Осевые моменты инерции, определенные относительно главных осей, имеют максимальное и минимальное значения.
Так же как и для статического момента, момент инерции сложной фигуры равен сумме моментов инерции образующих ее фигур. Подчеркнем, что сказанное справедливо в том случае, когда все моменты инерции вычисляются относительно одной и той же оси.
Для моментов инерции существует еще одно правило, часто используемое в расчетах. Применительно к осевым моментам оно "формулируется следующим образом: момент инерции фигуры относительно оси, параллельной центральной, равен моменту инерции относительно центральной оси плюс произведение площади фигуры, на квадрат расстояния между осями (рис. 9.18):

Для центробежных моментов инерции соответствующее правило в аналитическом виде выглядит так:


Для получения значения момента инерции конкретной фигуры в принципе надо решить соответствующий интеграл по площади этой фигуры. Однако с целью облегчения инженерных расчетов такие интегралы для наиболее распространенных форм поперечных сечений строительных элементов уже решены и результаты решений в виде формул представлены в таблицах, одна из которых помещена в приложении 3.
Кроме того, в ГОСТах на все стандартные профили проката, выпускаемые в нашей стране (уголки, двутавры и др.), даются значения осевых моментов инерции и других геометрических характеристик для каждого типоразмера проката (см. приложение 4).
Наконец, для сложных по форме сечений моменты инерции определяют, используя изложенные выше два правила: о сложении моментов инерции и о пересчете моментов инерции относительно одних осей на другие оси.
Момент сопротивления . Осевым моментом сопротивления плоской фигуры относительно какой-либо оси, лежащей в плоскости фигуры, называется частное от деления момента инерции относительно той же оси на расстояние до наиболее удаленной точки фигуры (см. рис. 9.17):

Моменты сопротивления имеют размерность длины в кубе (, ).
Формулы для расчетов осевых моментов сопротивлений наиболее часто встречающихся фигур приведены в приложении 3, а конкретные значения этой характеристики для профилей стального проката даны в ГОСТах (приложение 4). Отметим, что в отличие от моментов инерции моменты сопротивления складывать нельзя.
Радиус инерции . Радиусом инерции называется величина, получаемая по формуле

а для круга диаметром d радиус инерции относительно оси, проходящей через центр круга, равен

Сфера применения рассмотренных выше геометрических характеристик сечений будет раскрыта при изучении видов деформаций, которым посвящены следующие подразделы настоящей главы.

I = ∑r i 2 dF i =∫r 2 dF (1.1)

В принципе и определение и формула, его описывающая, не сложные и запомнить их намного легче, чем вникнуть в суть. Но все-таки попробуем разобраться, что же такое момент инерции и откуда он взялся.

Понятие момент инерции пришло в сопромат и строительную механику из другого раздела физики, изучающего кинематику движения, в частности вращательное движение. Но все равно начнем издалека.

Я точно не знаю, упало ли Исааку Ньютону на голову яблоко, упало оно рядом, или вообще не падало, теория вероятности допускает все эти варианты (к тому же в этом яблоке слишком много от библейской легенды о древе познания), однако я уверен, что Ньютон был наблюдательным человеком, способным делать выводы из своих наблюдений. Так наблюдательность и воображение позволили Ньютону сформулировать основной закон динамики (второй закон Ньютона), согласно которому масса тела m , умноженная на ускорение a , равна действующей силе Q (вообще-то более привычным для силы является обозначение F, но так как дальше мы будем иметь дело с площадью, которая также часто обозначается как F, то я использую для внешней силы, рассматриваемой в теоретической механике как сосредоточенная нагрузка, обозначение Q, сути дела это не меняет):

Q = ma (1.2)

По мне величие Ньютона именно в простоте и понятности данного определения. А еще, если учесть, что при равноускоренном движении ускорение а равно отношению приращения скорости ΔV к периоду времени Δt , за который скорость изменилась:

a = Δv/Δt = (v - v о)/t (1.3.1)

при V о = 0 a = v/t (1.3.2)

то можно определить основные параметры движения, такие как расстояние, скорость, время и даже импульс р , характеризующий количество движения:

p = mv (1.4)

Например, яблоко, падающее с разной высоты под действием только силы тяжести, будет падать до земли разное время, иметь разную скорость в момент приземления и соответственно разный импульс. Другими словами, яблоко, падающее с бóльшей высоты, будет дольше лететь и сильнее треснет по лбу незадачливого наблюдателя. И все это Ньютон свел к простой и понятной формуле.

А еще Ньютон сформулировал закон инерции (первый закон Ньютона): если ускорение а = 0 , то в инерциальной системе отсчета невозможно определить, находится ли наблюдаемое тело, на которое не действуют внешние силы, в состоянии покоя или движется прямолинейно с постоянной скоростью. Это свойство материальных тел сохранять свою скорость, пусть даже и нулевую, называется инертностью. Мерой инертности является инерционная масса тела. Иногда инерционная масса называется инертной, но сути дела это не меняет. Считается, что инерционная масса равна гравитационной массе и потому часто не уточняется, какая именно масса имеется в виду, а упоминается просто масса тела.

Не менее важным и значимым является и третий закон Ньютона, согласно которому сила действия равна силе противодействия, если силы направлены по одной прямой, но при этом в противоположные стороны . Не смотря, на кажущуюся простоту, и этот вывод Ньютона гениален и значение этого закона трудно переоценить. Об одном из применений этого закона чуть ниже.

Однако данные положения справедливы только для тел, движущихся поступательно, т.е. по прямолинейной траектории и при этом все материальные точки таких тел двигаются с одинаковой скоростью или одинаковым ускорением. При криволинейном движении и в частности при вращательном движении, например, когда тело вращается вокруг своей оси симметрии, материальные точки такого тела перемещаются в пространстве с одинаковой угловой скоростью w , но при этом линейная скорость v у различных точек будет разная и эта линейная скорость прямо пропорциональна расстоянию r от оси вращения до этой точки:

v = wr (1.5)

при этом угловая скорость равна отношению приращения угла поворота Δφ к периоду времени Δt , за который угол поворота изменился:

w = Δφ/Δt = (φ - φ о)/t (1.6.1)

при φ о = 0 w = φ/t (1.7.2)

соответственно нормальное ускорение а n при вращательном движении равно:

a n = v 2 /r = w 2 r (1.8)

И получается, что для вращательного движения мы не можем прямо использовать формулу (1.2), так как при вращательном движении одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Получается, что чем ближе материальные точки тела к оси вращения, тем меньшую силу требуется приложить, чтобы заставить тело вращаться и наоборот, чем дальше материальные точки тела от оси вращения, тем большую силу нужно приложить, чтобы заставить тело вращаться (в данном случае речь идет о приложении силы в одной и той же точке). К тому же при вращении тела более удобно рассматривать не действующую силу, а вращающий момент, так как при вращательном движении точка приложения силы также имеет большое значение.

Поразительные свойства момента нам известны со времен Архимеда и если применить понятие момента к вращательному движению, то значение момента М будет тем больше, чем больше расстояние r от оси вращения до точки приложения силы F (в строительной механике внешняя сила часто обозначается как Р или Q ):

М = Qr (1.9)

Из этой также не очень сложной формулы выходит, что если сила будет приложена по оси вращения, то никакого вращения не будет, так как r = 0, а если сила будет приложена на максимальном удалении от оси вращения, то и значение момента будет максимальным. А если мы подставим в формулу (1.9) значение силы из формулы (1.2) и значение нормального ускорения и формулы (1.8), то получим следующее уравнение:

М = mw 2 r·r = mw 2 r 2 (1.10)

В частном случае когда тело является материальной точкой, имеющей размеры намного меньше, чем расстояние от этой точки до оси вращения, уравнение (1.10) применимо в чистом виде. Однако для тела, вращающегося вокруг одной из своих осей симметрии, расстояние от каждой материальной точки составляющей данное тело, всегда меньше одного из геометрических размеров тела и потому распределение массы тела имеет большое значение, в этом случае требуется учесть эти расстояния отдельно для каждой точки:

M = ∑r i 2 w 2 m i (1.11.1)

М с = w 2 ∫r 2 dm

И тогда получается, что согласно третьему закону Ньютона в ответ на действие вращающего момента будет возникать так называемый момент инерции I . При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. В итоге формула момента инерции примет следующий вид:

[- М] = I = ∑r i 2 m i (1.12.1)

I c = ∫r 2 dm (1.11.2) - при вращении тела вокруг оси симметрии

где I - общепринятое обозначение момента инерции, I c - обозначение осевого момента инерции тела, кг/м 2 . Для однородного тела, имеющего одинаковую плотность ρ по всему объему тела V формулу осевого момента инерции тела можно записать так:

I c = ∫ρr 2 dV (1.13)

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении .

Все круг замкнулся. И тут может возникнуть вопрос, какое отношение все эти законы динамики и кинематики имеют к расчету статических строительных конструкций? Оказывается, что ни на есть самое прямое и непосредственное. Во-первых потому, что все эти формулы выводились физиками и математиками в те далекие времена, когда таких дисциплин, как "Теоретическая механика" или "Теория сопротивления материалов" попросту не существовало. А во-вторых потому, что весь расчет строительных конструкций и построен на основе указанных законов и формулировок и пока ни кем не опровергнутом утвержении о равенстве гравитационной и инертой масс. Вот только в теории сопротивления материалов все еще проще, как ни парадоксально это звучит.

А проще потому, что при решении определенных задач может рассматриваться не все тело, а только его поперечное сечение, а при необходимости несколько поперечных сечений. Но в этих сечениях действуют такие же физические силы, правда имеющие несколько иную природу. Таким образом, если рассматривать некое тело, длина которого постоянна, а само тело является однородным, то если не учитывать постоянные параметры - длину и плотность (l = const, ρ = const ) - мы получим модель поперечного сечения. Для такого поперечного сечения с математической точки зрения будет справедливым уравнение:

I р = ∫r 2 dF (2.1) → (1.1)

где I p - полярный момент инерции поперечного сечения, м 4 . В итоге мы получили формулу, с которой начинали (а вот стало ли понятнее, что такое момент инерции сечения, не знаю).

Так как в теории сопротивления материалов часто рассматриваются прямоугольные сечения, да и прямоугольная система координат более удобна, то при решении задач обычно рассматриваются два осевых момента инерции поперечного сечения:

I z = ∫y 2 dF (2.2.1)

I y = ∫z 2 dF (2.2.2)

Рисунок 1 . Значения координат при определении осевых моментов инерции.

Тут может возникнуть вопрос, почему использованы оси z и у , а не более привычные х и у ? Так уж сложилось, что определение усилий в поперечном сечении и подбор сечения, выдерживающего действующие напряжения, равные приложенным усилиям - две разные задачи. Первую задачу - определение усилий - решает строительная механика, вторую задачу - подбор сечения - теория сопротивления материалов. При этом в строительной механике рассматривается при решении простых задач достаточно часто стержень (для прямолинейных конструкций), имеющий определенную длину l , а высота и ширина сечения не учитываются, при этом считается, что ось х как раз и проходит через центры тяжести всех поперечных сечений и таким образом при построении эпюр (порой достаточно сложных) длина l как раз и откладывается по оси х , а по оси у откладываются значения эпюр. В то же время теория сопротивления материалов рассматривает именно поперечное сечение, для которого важны ширина и высота, а длина не учитывается. Само собой при решении задач теории сопротивления материалов, также порой достаточно сложных используются все те же привычные оси х и у . Мне такое положение дел кажется не совсем правильным, так как не смотря на разницу, это все же смежные задачи и потому будет более целесообразным использование единых осей для рассчитываемой конструкции.

Значение полярного момента инерции в прямоугольной системе координат будет:

I р = ∫r 2 dF = ∫y 2 dF + ∫z 2 dF (2.3)

Так как в прямоугольной системе координат радиус - это гипотенуза прямоугольного треугольника, а как известно квадрат гипотенузы равен сумме квадратов катетов. А еще существует понятие центробежного момента инерции поперечного сечения:

I xz = ∫xzdF (2.4)

Среди осей прямоугольной системы координат, проходящих через центр тяжести поперечного сечения, есть две взаимно-перпендикулярные оси, относительно которых осевые моменты инерции принимают максимальное и минимальное значение, при этом центробежный момент инерции сечения I zy = 0 . Такие оси называют главными центральными осями поперечного сечения, а моменты инерции относительно таких осей - главными центральными моментами инерции

Когда в теории сопротивления материалов речь заходит о моментах инерции, то как правило в виду имеются именно главные центральные моменты инерции поперечного сечения. Для квадратных, прямоугольных, круглых сечений главные оси будут совпадать с осями симметрии. Моменты инерции поперечного сечения также называют геометрическими моментами инерции или моментами инерции площади, но суть от этого не изменяется.

В принципе самому определять значения главных центральных моментов инерции для поперечных сечений наиболее распространенных геометрических форм - квадрата, прямоугольника, круга, трубы, треугольника и некоторых других - большой необходимости нет. Такие моменты инерции давно определены и широко известны. А при расчете осевых моментов инерции для сечений сложной геометрической формы справедлива теорема Гюйгенса-Штейнера:

I = I c + r 2 F (2.5)

таким образом, если известны площади и центры тяжести простых геометрических фигур, составляющих сложное сечение, то определить значение осевого момента инерции всего сечения не составит труда. А для того, чтобы определить центр тяжести сложного сечения, используются статические моменты поперечного сечения. Более подробно статические моменты рассматриваются в другой статье, здесь лишь добавлю. Физический смысл статического момента следующий: статический момент тела - это сумма моментов для материальных точек, составляющих тело, относительно некоторой точки (полярный статический момент) или относительно оси (осевой статический момент), а так как момент - это произведение силы на плечо (1.9), то и определяется статический момент тела соответственно:

S = ∑M = ∑r i m i = ∫rdm (2.6)

и тогда полярный статический момент поперечного сечения будет:

S р = ∫rdF (2.7)

Как видим, определение статического момента сходно с определением момента инерции. Но есть и принципиальная разница. Статический момент потому и называется статическим, что для тела, на которое действует сила тяжести, статический момент равен нулю относительно центра тяжести. Другими словами такое тело находится в состоянии равновесия, если опора приложена к центру тяжести тела. А согласно первому закону Ньютона такое тело или находится в состоянии покоя или движется с постоянной скоростью, т.е. ускорение = 0. А еще с чисто математической точки зрения статический момент может быть равен нулю по той простой причине, что при определении статического момента необходимо учитывать направление действия момента. Например относительно осей координат, проходящих через центр тяжести прямоугольника, площади верхней части и нижней части прямоугольника будут положительными так как символизируют силу тяжести, действующую в одном направлении. При этом расстояние от оси до центра тяжести можно рассматривать как положительное (условно: момент от силы тяжести верхней части прямоугольника пытается вращать сечение по часовой стрелке), а до центра тяжести нижней части - как отрицательное (условно: момент от силы тяжести нижней части прямоугольника пытается вращать сечение против часовой стрелки). А так как такие площади численно равны и равны расстояния от центров тяжести верхней части прямоугольника и нижней части прямоугольника, то сумма действующих моментов и составит искомый 0.

S z = ∫ydF = 0 (2.8)

А еще этот великий ноль позволяет определять опорные реакции строительных конструкций. Если рассматривать строительную конструкцию, к которой приложена например сосредоточенная нагрузка Q в некоторой точке, то такую строительную конструкцию можно рассматривать, как тело с центром тяжести в точке приложения силы, а опорные реакции в этом случае рассматриваются, как силы приложенные в точках опор. Таким образом зная значение сосредоточенной нагрузки Q и расстояния от точки приложения нагрузки до опор строительной конструкции, можно определить опорные реакции. Например для шарнирно опертой балки на двух опорах значение опорных реакций будет пропорционально расстоянию до точки приложения силы, а сумма реакций опор будет равна приложенной нагрузке. Но как правило при определении опорных реакций поступают еще проще: за центр тяжести принимается одна из опор и тогда сумма моментов от приложенной нагрузки и от остальных опорных реакций все равно равна нулю. В этом случае момент от опорной реакции относительно которой составляется уравнение моментов, равен нулю, так как плечо действия силы = 0, а значит в сумме моментов остаются только две силы: приложенная нагрузка и неизвестная опорная реакция (для статически определимых конструкций).

Таким образом принципиальная разница между статическим моментом и моментом инерции в том, что статический момент характеризует сечение, которое сила тяжести как бы пытается сломать пополам относительно центра тяжести или оси симметрии, а момент инерции характеризует тело, все материальные точки которого перемещаются (или пытаются переместиться в одном направлении). Возможно, более наглядно представить себе эту разницу помогут следующие достаточно условные расчетные схемы для прямоугольного сечения:

Рисунок 2 . Наглядная разница между статическим моментом и моментом инерции.

А теперь вернемся еще раз к кинематике движения. Если проводить аналогии между напряжениями, возникающими в поперечных сечениях строительных конструкций, и различными видами движения, то в центрально растягиваемых и центрально сжатых элементах возникают напряжения равномерные по всей площади сечения. Эти напряжения можно сравнить с действием некоторой силы на тело, при котором тело будет двигаться прямолинейно и поступательно. А самое интересное, это то, что поперечные сечения центрально-растянутых или центрально сжатых элементов действительно движутся, так как действующие напряжения вызывают деформации. И величину таких деформаций можно определить для любого поперечного сечения конструкции. Для этого достаточно знать значение действующих напряжений, длину элемента, площадь сечения и модуль упругости материала, из которого изготовлена конструкция.

У изгибаемых элементов поперечные сечения также не остаются на месте, а перемещаются, при этом перемещение поперечных сечений изгибаемых элементов подобно вращению некоего тела относительно некоторой оси. Как вы уже наверное догадались, момент инерции позволяет определить и угол наклона поперечного сечения и перемещение Δl для крайних точек сечения. Эти крайние точки для прямоугольного сечения находятся на расстоянии, равном половине высоты сечения (почему - достаточно подробно описано в статье "Основы сопромата. Определенение прогиба "). А это в свою очередь позволяет определить прогиб конструкции.

А еще момент инерции позволяет определить момент сопротивления сечения . Для этого момент инерции нужно просто разделить на расстояние от центра тяжести сечения до наиболее удаленной точки сечения, для прямоугольного сечения на h/2. А так как исследуемые сечения не всегда симметричны, то значение момента сопротивления может быть разным для разных частей сечения.

А началось все с банального яблока... хотя нет, начиналось все со слова.

Результат расчетов зависит не только от площади сечения, поэтому при решении задач по сопромату не обойтись без определения геометрических характеристик фигур : статических, осевых, полярного и центробежного моментов инерции. Обязательно необходимо уметь определять положение центра тяжести сечения (от положения центра тяжести зависят перечисленные геометрические характеристики). К дополнению к геометрическим характеристикам простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольников, круга, полукруга . Указаны центр тяжести и положение главных центральных осей, и определены относительно них геометрические характеристики при условии, что материал балки однородный.

Геометрические характеристики прямоугольника и квадрата

Осевые моменты инерции прямоугольника (квадрата)

Геометрические характеристики прямоугольного треугольника

Осевые моменты инерции прямоугольного треугольника

Геометрические характеристики равнобедренного треугольника

Осевые моменты инерции равнобедренного треугольника