Что происходит при деполяризации. Физиология возбудимых тканей. медицинская физиология медицинская физиология изучает функции организма человека во взаимодействии с окружающей средой. Что такое потенциал покоя и потенциал действия

ЗАКОНЫ ДЕЙСТВИЯ ПОСТОЯННОГО ТОКА НА

ВОЗБУДИМЫЕ ТКАНИ.

Полярный закон действия тока . При раздражении нерва или мышцы постоянным током возбуждение возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания - только под анодом, причем порог замыкательного удара меньше, чем размыкательного. Прямые измерения показали, что прохождение через нервное или мышечное волокно электрического тока вызывает прежде всего изменение мембранного потенциала под электродами. В области приложения к поверхности ткани анода (+) положительный потенциал на наружной поверхности мембраны возрастает, т.е. в этом участке происходит гиперполяризация мембраны, что не способствует возбуждению, а, наоборот, ему препятствует. В том же участке, где к мембране приложен катод (-), положительный потенциал наружной поверхности снижается, происходит деполяризация, и если она достигает критической величины - в этом месте возникает ПД.

Изменение МП возникают не только непосредственно в точках приложения к нервному волокну катода и анода, но и на некотором расстоянии от них, но величина этих сдвигов убывает по мере удаления от электродов. Изменения МП под электродами носят название электротонических (соответственно кат-электротон и ан-электротон ), а за электродами - периэлектротонических (кат- и ан-периэлектротон).

Увеличение МП под анодом (пассивная гиперполяризация) не сопровождается изменением ионной проницаемости мембраны даже при большой силе приложенного тока. Поэтому при замыкании постоянного тока возбуждение под анодом не возникает. В отличие от этого, уменьшение МП под катодом (пассивная деполяризация) влечет за собой кратковременное повышение проницаемости для Na, что приводит к возбуждению.

Повышение проницаемости мембраны для Na при пороговом раздражении не сразу достигает максимальной величины. В первый момент деполяризация мембраны под катодом приводит к небольшому увеличению натриевой проницаемости и открытию небольшого числа каналов. Когда же под влиянием этого в протоплазму начинают поступать заряженные положительно ионы Na+, то деполяризация мембраны усиливается. Это ведет к открытию других Na-каналов, и, следовательно, к дальнейшей деполяризации, которая, в свою очередь, обуславливает еще большее повышение натриевой проницаемости. Этот круговой процесс, основанный на т.н. положительной обратной связи, получил название регенеративной деполяризации. Возникает она только при снижении Е о до критического уровня (Е к). Причина повышения натриевой проницаемости при деполяризации связана, вероятно, с удалением Са++ из натриевых ворот при возникновении электро отрицательности (или снижении электро положительности) на наружной стороне мембраны.

Повышенная натриевая проницаемость через десятые доли миллисекунды за счет механизмов натриевой инактивации прекращается.

Скорость, с которой происходит деполяризация мембраны, зависит от силы раздражающего тока. При слабой силе деполяризация развивается медленно, и поэтому для возникновения ПД такой стимул должен иметь большую длительность.

Локальный ответ, который возникает при под пороговых стимулах, так же, как и ПД, обусловлен повышением натриевой проницаемости мембраны. Однако при под пороговом стимуле это повышение недостаточно велико для того, чтобы вызвать процесс регенеративной деполяризации мембраны. Поэтому начавшаяся деполяризация приостанавливается инактивацией и повышением калиевой проницаемости.

Подводя итог изложенному выше, можно следующим образом изобразить цепь событий, развивающихся в нервном или мышечном волокне под катодом раздражающего тока: пассивная деполяризация мембраны ---- повышение натриевой проницаемости --- усиление потока Na внутрь волокна --- активная деполяризация мембраны -- локальный ответ --- превышение Ек --- регенеративная деполяризация --- потенциал действия (ПД).

Каков же механизм возникновения возбуждения под анодом при размыкании? В момент включения тока под анодом мембранный потенциал возрастает - происходит гиперполяризация. При этом разница между Ео и Ек растет, и для того, чтобы сдвинуть МП до критического уровня, нужна большая сила. При выключении тока (размыкание) исходный уровень Ео восстанавливается. Казалось бы, в это время нет условий для возникновения возбуждения. Но это справедливо только для того случая, если действие тока продолжалось очень короткое время (менее 100 мсек.). При длительном действии тока начинает меняться сам критический уровень деполяризации - он растет. И, наконец, возникает момент, когда новый Ек становится равным старому уровню Ео. Теперь при выключении тока возникают условия для возбуждения, ибо мембранный потенциал становится равным новому критическому уровню деполяризации. Величина ПД при размыкании всегда больше, чем при замыкании.

Зависимость пороговой силы стимула от его длительности . Как уже указывалось, пороговая сила любого стимула в определенных пределах находится в обратной зависимости от его длительности. В особенно четкой форме эта зависимость проявляется при использовании в качестве раздражителя прямоугольных толчков постоянного тока. Полученная в таких опытах кривая получила название "кривой силы-времени". Она была изучена Гоорвегом, Вейсом и Лапиком в начале века. Из рассмотрения этой кривой прежде всего следует, что ток ниже некоторой минимальной величины или напряжения не вызывает возбуждения, как бы длительно он не действовал. Минимальная сила тока, способная вызвать возбуждение, названа Лапиком реобазой. Наименьшее время, в течение которого должен действовать раздражающий стимул, называют полезным временем. Усиление тока приводит к укорочению минимального времени раздражения, но не беспредельно. При очень коротких стимулах кривая силы-времени становится параллельной оси координат. Это означает, что при таких кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражения.

Определение полезного времени практически затруднено, так как точка полезного времени находится на участке кривой, переходящей в параллельную. Поэтому Лапик предложил использовать полезное время двух реобаз - хронаксию. Ее точка находится на самом крутом участке кривой Гоорвега-Вейса. Хронаксиметрия получила широкое распространение как в эксперименте, так и в клинике для диагностики повреждений волокон двигательных нервов.

Зависимость порога от крутизны нарастания силы раздражителя . Величина порога раздражения нерва или мышцы зависит не только от длительности стимула, но и от крутизны нарастания его силы. Порог раздражения имеет наименьшую величину при толчках тока прямоугольной формы, характеризующихся максимально быстрым нарастанием тока. Если же вместо таких стимулов применять линейно или экспоненциально нарастающие стимулы, пороги оказываются увеличенными и тем больше, чем медленнее нарастает ток. При уменьшении крутизны нарастания тока ниже некоторой минимальной величины (т.н. критический наклон) ПД вообще не возникает, до какой бы конечной силы не увеличивался ток.



Такое явление приспособления возбудимой ткани к медленно нарастающему раздражителю получило название аккомодация. Чем выше скорость аккомодации, тем более круто должен нарастать стимул, чтобы не утратить своего раздражающего действия. Аккомодация к медленно нарастающему току обусловлена тем, что за время действия этого тока в мембране успевают развиться процессы, препятствующие возникновению ПД.

Выше уже указывалось, что деполяризация мембраны приводит к началу двух процессов: одного - быстрого, ведущего к повышению натриевой проницаемости и возникновению ПД, а другого - медленного, приводящего к инактивации натриевой проницаемости и к окончанию возбуждения. При крутом нарастании стимула Na-активация успевает достичь значительной величины прежде, чем развивается Na-инактивация. В случае медленного нарастания силы тока на первый план выступают процессы инактивации, приводящие к повышению порога и снижению амплитуды ПД. Все агенты, усиливающие или ускоряющие инактивацию, увеличивают скорость аккомодации.

Аккомодация развивается не только при раздражении возбудимых тканей электрическим током, но и в случае применения механических, термических и прочих стимулов. Так, быстрый удар палочкой по нерву вызывает его возбуждение, при медленном же надавливании на нерв той же палочкой возбуждения не возникает. Изолированное нервное волокно можно возбудить быстрым охлаждением, а медленным - нельзя. Лягушка выпрыгнет, если ее бросить в воду с температурой 40 градусов, но если ту же лягушку поместить в холодную воду, и медленно нагревать ее, то животное сварится, но не будет реагировать прыжком на подъем температуры.

В лаборатории показателем скорости аккомодации является та наименьшая крутизна нарастания тока, при которой стимул еще сохраняет способность вызывать ПД. Эту минимальную крутизну называюткритическим наклоном . Его выражают или в абсолютных единицах (мА/сек), или в относительных (как отношение пороговой силы того постепенно нарастающего тока, который еще способен вызывать возбуждение, к реобазе прямоугольного толчка тока).

Закон "все или ничего". При изучении зависимости эффектов раздражения от силы приложенного стимула был установлен т.н. закон "все или ничего". Согласно этому закону, под пороговые раздражения не вызывают возбуждения ("ничего"), при пороговых же стимулах возбуждение сразу приобретает максимальную величину ("все"), и уже не возрастает при дальнейшем усилении раздражителя.

Эта закономерность первоначально была открыта Боудичем при исследовании сердца, а в дальнейшем подтверждена и на других возбудимых тканях. Долгое время закон "все или ничего" неправильно интерпретировался как общий принцип реагирования возбудимых тканей. Предполагали, что "ничего" означает полное отсутствие ответа на под пороговый стимул, а "все" рассматривалось как проявление полного исчерпания возбудимым субстратом его потенциальных возможностей. Дальнейшие исследования, в особенности микроэлектродные, показали, что эта точка зрения не соответствует действительности. Выяснилось, что при под пороговых силах возникает местное не распространяющееся возбуждение (локальный ответ). Вместе с тем оказалось, что "все" также не характеризует того максимума, которого может достигнуть ПД. В живой клетке существуют процессы, активно приостанавливающие деполяризацию мембраны. Если каким-либо воздействием на нервное волокно, например, наркотиками, ядами, ослабить входящий Na-ток, обеспечивающий генерацию ПД, то он перестает подчиняться правилу "все или ничего" - его амплитуда начинает градуально зависеть от силы стимула. Поэтому "все или ничего" рассматривается сейчас не как всеобщий закон реагирования возбудимого субстрата на раздражитель, а лишь как правило, характеризующее особенности возникновения ПД в данных конкретных условиях.

Понятие о возбудимости. Изменения возбудимости при возбуждении.

Сердечная мышца характеризуется электрической гетерогенностью . Существует два типа электрической активности мембраны сердечных клеток - быстрый и медленный. Клетками с быстрым ответом являются все сократительные и специализированные клетки проводниковой системы предсердий и желудочков. К клеткам с медленным ответом относятся клетки синоаурикулярного и атриовентри-кулярного узлов, а также мышечные клетки вокруг атриовентрикулярных отверстий и в створках митрального и трехстворчатого клапанов.

Клетки с быстрым ответом обладают мембранным потенциалом покоя в 80-90 мВ (внутренняя поверхность мембраны заряжена отрицательно), пороговый потенциал регенеративной деполяризации равен 70 мВ, реверсия потенциала в пределах 25-35 мВ (внутренняя поверхность мембраны заряжена положительно), максимальная скорость регенеративной деполяризации достигает 1000 В/с. Такие клетки проводят волну возбуждения со скоростью 1 - 5 м/с.

Деполяризация этих клеток связана с начальным быстрым током ионов натрия внутрь клетки по «быстрым» Na-каналам мембран (фаза ОПД). Когда же потенциал деполяризующейся мембраны становится более положительным, чем -50 мВ, через «медленные» каналы в клетки начинают поступать Са++ и Na+. Продолжительность сопряженного Са++ - Na+ -тока в 10-20 раз превышает длительность начального тока Na+. Вследствие этого клеточная мембрана еще около 100-150 мс поддерживается в состоянии деполяризации.

При деполяризации мембраны до -40 мВ активируется ток ионов К. Этот выходящий из клетки «задержанный» К+-ток реполяризует мембраны со скоростью, редко превышающей 1 В/с. Следовательно, реполяризация мембран быстрых клеток связана с постепенным ослаблением Са++-Nа+-тока и активацией К + -тока.

Потенциал действия клетки рабочего миокарда .
Быстрое развитие деполяризации и продолжительная реполяризация. Замедленная реполяризация (плато) переходит в быструю реполяризацию.

Клетки с медленным электрическим ответом имеют трансмембранный потенциал покоя в пределах -70 - -60 мВ. Реверсия потенциала покоя колеблется от 0 до 5 мВ, скорость регенерации деполяризации менее 10 В/с, волна возбуждения проводится со скоростью 0,01-0,1 м/с. В таких клетках нет «быстрых» Na^-каналов мембран. Регенеративная деполяризация в этих клетках, очевидно, связана с поступлением ионов кальция в клетки через «медленные» каналы мембран.

Реполяризация медленной клетки существенно отличается от этого процесса «быстрых» клеток. Нормальная возбудимость и способность проводить импульсы у медленных клеток еще долго не восстанавливается после завершения реполяризации. Рефрактерное состояние медленных клеток значительно выше продолжительности их потенциала действия.
Сократимостью реализуются функции автоматизма, возбудимости и проводимости. По сути, это интегральная функция сердца.

Сердечная мышца (миокард предсердий и желудочков) образована мышечными клетками, или волокнами (фибриллами). Согласно данным световой микроскопии, эти волокна состоят из множества поперечно исчерченных полосок, называемых миофиб-риллами, которые прослеживаются по всей длине волокна. Миофибриллы, в свою очередь, образованы последовательно повторяющимися структурами - саркомерами. Миофибриллы занимают около половины всей клеточной массы сердца. Они расположены так, что концы саркомеров примыкают один к другому. Поэтому все волокно под микроскопом выглядит исчерченным. Саркомеры состоят из нитей сократительных белков, взаимно ориентированных.

Из миофибрилл сердечной мышцы выделено три основных сократительных белка: миозин, актин и тропомиозин. Миозин образует толстые нити, которые состоят из 200-300 молекул миозина, лежащих рядом и зигзагообразно сплетенных. При этом шаровидные части молекул находятся латерально, а стержневидные части - в центре толстой нити. Полагают (Н. Huxley, 1964), что шаровидные части молекул вдоль нитей образуют участки тянущих «мостиков». Предполагается, что в этих «мостиках» локализована АТФ-азная активность, а также механизм взаимодействия миозиновых нитей с акти-новыми. Здесь при сокращении генерируется сила и укорачивается саркомер.

- Вернуться в оглавление раздела " "






Биологическая мембрана, Толщина мембран 7-10 нм, состоит из двойного слоя фосфолипидов: гидрофильные части (головки) направлены к поверхности мембраны; гидрофобные части (хвосты) направлены внутрь мембраны. Гидрофобные концы стабилизируют мембрану в виде бислоя












ФУНКЦИИ МЕМБРАН СТРУКТУРНАЯСТРУКТУРНАЯ. ЗАЩИТНАЯ.ЗАЩИТНАЯ. ФЕРМЕНТАТИВНАЯФЕРМЕНТАТИВНАЯ СОЕДИНИТЕЛЬНАЯ ИЛИ АДГЕЗИВНАЯ (обуславливает существование многоклеточных организмов). РЕЦЕПТОРНАЯРЕЦЕПТОРНАЯ. АНТИГЕННАЯАНТИГЕННАЯ. ЭЛЕКТРОГЕННАЯЭЛЕКТРОГЕННАЯ ТРАНСПОРТНАЯТРАНСПОРТНАЯ.


СВЯЗЬ МЕЖДУ КЛЕТКАМИ КЛЕТКА сигнальная молекула (первый посредник) или лиганд КЛЕТКА сигнальная молекула (первый посредник) или лиганд молекула мембраны (канал или рецептор) молекула мембраны (канал или рецептор) КЛЕКТИ-МИШЕНИ молекулы клетки или вторые посредники каскад ферментативных реакций изменение функции клетки КЛЕКТИ-МИШЕНИ молекулы клетки или вторые посредники каскад ферментативных реакций изменение функции клетки




РЕЦЕПТОРЫ МЕМБРАН Это молекулы (белки, глико- или липопротеины), чувствительные к биологически активным веществам – лигандам Это молекулы (белки, глико- или липопротеины), чувствительные к биологически активным веществам – лигандам Лиганды – внешние раздражители для клетки Лиганды – внешние раздражители для клетки Рецепторы – высокоспецифичны или селективны Рецепторы – высокоспецифичны или селективны




МЕХАНИЗМ РАБОТЫ РЕЦЕПТОРОВ Мембранные рецепторы регистрируют наличие лиганда: передают сигнал внутриклеточным химическим соединениям вторым посредникам – МЕССЕНДЖЕРАМ 2. 2.Регулируют состояние ионных каналов










СВОЙСТВА ИОННЫХ КАНАЛОВ 1.Селективность - 1.Селективность - каждый канал пропускает только определенный («свой») ион Может находится в разных функциональных состояниях: закрытый, но готовый к открытию (1) открытый – активированный (2) Инактивированный (3)
















Гиперполяризация Увеличение разности ПД между сторонами мембраны Увеличение разности ПД между сторонами мембраныДЕПОЛЯРИЗАЦИЯ Уменьшение разности потенциалов между сторонами мембраны Уменьшение разности потенциалов между сторонами мембраныРЕПОЛЯРИЗАЦИЯ Увеличение величины МП после деполяризации.


МЕМБРАННЫЙ ПОТЕНЦИАЛ ПОКОЯ Это разность потенциалов между наружной и внутренней поверхностью мембраны возбудимой клетки, находящейся в состоянии покоя. Потенциал покоя регистрируется внутриклеточным микроэлектродом по отношению к референтному внеклеточному электроду.







Градиент Это вектор, показывающий разницу между наибольшим и наименьшим значением какой-либо величины в разных точках пространства, а также указывающий на степень этого изменения. Это вектор, показывающий разницу между наибольшим и наименьшим значением какой-либо величины в разных точках пространства, а также указывающий на степень этого изменения.


ФАКТОРЫ, ФОРМИРУЮЩИЕ МП 1. ИОННАЯ АСИМЕТРИЯ Концентрационный градиент калия Концентрационный градиент калия Концентрационный градиент натрия Концентрационный градиент натрия = p = 8-10p


2.Полупроницаемость мембраны K + Na + Cl - Белок


«Электрический градиент» Это сила, создаваемая электрическим полем трансмембранной разности потенциалов Это сила, создаваемая электрическим полем трансмембранной разности потенциалов Выход калия наружу уменьшает концентрационный градиент, а электри- ческий – увеличивает. Выход калия наружу уменьшает концентрационный градиент, а электри- ческий – увеличивает. В результате величина градиентов выравнивается В результате величина градиентов выравнивается


«Электрический градиент» Трансмембранная разность потенциалов создает электрическое поле, а следовательно и электрический градиент Трансмембранная разность потенциалов создает электрическое поле, а следовательно и электрический градиент По мере выхода калия наружу концентрационный градиент уменьшается, а электрический – растет. По мере выхода калия наружу концентрационный градиент уменьшается, а электрический – растет. В результате наступает выравнивание двух градиентов В результате наступает выравнивание двух градиентов


Равновесный потенциал равновесное состояние - это такая величина электрического заряда мембраны, которая полностью уравновешивает концентрационный градиент для определенного иона и суммарный ток этого иона будет равен 0. равновесное состояние - это такая величина электрического заряда мембраны, которая полностью уравновешивает концентрационный градиент для определенного иона и суммарный ток этого иона будет равен 0. Равновесный потенциал для калия = -86 мВ (Ек+ = -86 мВ) Равновесный потенциал для калия = -86 мВ (Ек+ = -86 мВ)


Состояние покоя для клетки Мембрана немного проницаема для натрия, что уменьшает разность зарядов и величину электрического градиента Мембрана немного проницаема для натрия, что уменьшает разность зарядов и величину электрического градиента Калий выходит из клетки Калий выходит из клетки


Механизмы поддержания ионной асимметрии Электрический заряд на мембране – способствует входу калия в клетку и тормозит его выход Электрический заряд на мембране – способствует входу калия в клетку и тормозит его выход Калий-натриевый насос – активный транспорт, который переносит через мембрану ионы против концентрационного градиента Калий-натриевый насос – активный транспорт, который переносит через мембрану ионы против концентрационного градиента




ФУНКЦИИ КАЛИЙ- НАТРИЕВОГО НАСОСА Активный транспорт ионов Активный транспорт ионов АТФ-азная ферментативная активность АТФ-азная ферментативная активность Поддержание ионной асимметрии Поддержание ионной асимметрии Усиление поляризации мембраны – электрогенный эффект Усиление поляризации мембраны – электрогенный эффект


Деполяризация Возникает при открытии натриевых каналов Возникает при открытии натриевых каналов Натрий входит в клетку: Натрий входит в клетку: уменьшает отрицательный заряд на внутренней поверхности мембраны уменьшает отрицательный заряд на внутренней поверхности мембраны уменьшает электрическое поле вокруг мембраны уменьшает электрическое поле вокруг мембраны Степень деполяризации зависит от количества открытых каналов для натрия Степень деполяризации зависит от количества открытых каналов для натрия


КРИТИЧЕСКИЙ УРОВЕНЬ ДЕПОЛЯРИЗАЦИИИ Е кр Уровень деполяризации, при котором открывается максимально возможное количество натриевых каналов (все каналы для натрия открыты) Уровень деполяризации, при котором открывается максимально возможное количество натриевых каналов (все каналы для натрия открыты) Поток ионов натрия «лавиной» устремляется в клетку Поток ионов натрия «лавиной» устремляется в клетку Начинается регенеративная деполяризация Начинается регенеративная деполяризация


Порог деполяризации Разность между величиной исходной поляризации мембраны (Е 0) и критическим уровнем деполяризации (Е кр) Разность между величиной исходной поляризации мембраны (Е 0) и критическим уровнем деполяризации (Е кр) Δ V= Е 0 - Е кр Δ V= Е 0 - Е кр При этом ток натрия превышает ток калия в 20 раз! При этом ток натрия превышает ток калия в 20 раз! Зависит от соотношения активированных натриевых и калиевых каналов Зависит от соотношения активированных натриевых и калиевых каналов




Закон «все или ничего» Подпороговый раздражитель вызывает местную деполяризацию («ничего») Подпороговый раздражитель вызывает местную деполяризацию («ничего») Пороговый раздражитель вызывает максимально возможный ответ («Все») Пороговый раздражитель вызывает максимально возможный ответ («Все») Сверхпороговый раздражитель вызывает такой же ответ, что и пороговый Сверхпороговый раздражитель вызывает такой же ответ, что и пороговый Т.о. ответ клетки не зависит от силы раздражителя. Т.о. ответ клетки не зависит от силы раздражителя.


ЛО Свойства ЛО 1. Не подчиняется закону «все или ничего» Амплитуда ЛО зависит от силы стимула Распространяется по мембране затуханием (декрементом) Может суммироваться (в результате амплитуда деполяризации увеличивается) Трансформируется в потенциал действия при достижении уровня критической деполяризации




Потенциал действия (ПД) Это разность потенциалов между возбужденным и невозбужденным участками мембраны, которая возникает в результате быстрой деполяризации мембраны с последующей ее перезарядкой. Это разность потенциалов между возбужденным и невозбужденным участками мембраны, которая возникает в результате быстрой деполяризации мембраны с последующей ее перезарядкой. Амплитуда ПД около 120 – 130 мкВ, длительность (в среднем) - 3 – 5 мс Амплитуда ПД около 120 – 130 мкВ, длительность (в среднем) - 3 – 5 мс (в разных тканях от 0,01мс до 0,3 с). (в разных тканях от 0,01мс до 0,3 с).



Е0Е0 Е кр мВ









Условия возникновения ПД Деполяризация должна достигнуть критического уровня деполяризации Деполяризация должна достигнуть критического уровня деполяризации Ток натрия в клетку должен превышать ток калия из клетки в 20 раз (каналы для натрия быстропроводящие, а для калия – медленные) Ток натрия в клетку должен превышать ток калия из клетки в 20 раз (каналы для натрия быстропроводящие, а для калия – медленные) Должна развиться регенеративная деполяризация Должна развиться регенеративная деполяризация




Е0Е0 Е кр 0 +30



Раздражение Это процесс воздействия на клетку Это процесс воздействия на клетку Эффект воздействия зависит как от качественных и количественных характеристик раздражителя, так и свойств самой клетки Эффект воздействия зависит как от качественных и количественных характеристик раздражителя, так и свойств самой клетки






ЗАКОНЫ РАЗДРАЖЕНИЯ Это комплекс правил, описывающих требования, которым должен подчиняться раздражитель, чтобы он мог вызвать процесс возбуждения. К ним относятся: полярный закон закон силы закон времени (длительности действия) закон крутизны (времени нарастания силы)



69 Законы раздражения Закон силы Закон силы – чтобы возник ПД, сила стимула должна быть не меньше пороговой величины. Закон времени Закон времени – чтобы возник ПД, время дейстия стимула должно быть не меньше пороговой величины Закон крутизны Закон крутизны – чтобы возник ПД, крутизна стимула должна быть не меньше пороговой величины


Зависимость силы от времени действия Р – реобаза – это минимальная сила тока, вызывающая возбуждение ПВ – полезное время – ми- нимальное время действия раздражающего импульса силой в одну реобазу, необходимое для возбуждения. Хр – хронаския - минимальное время действия раздражающего импульса силой в 2 реобазы необходимое для возикновенния ПД.


Аккомодация Это способность ткани приспосабливаться к длительно действующему раздражителю. При этом сила его также увеличивается медленно (маленькая крутизна) Это способность ткани приспосабливаться к длительно действующему раздражителю. При этом сила его также увеличивается медленно (маленькая крутизна) Происходит смещение критического уровня деполяризации в сторону нуля Происходит смещение критического уровня деполяризации в сторону нуля Натриевые каналы открываются не одновременно и ток натрия в клетку компенсируется током калия из клетки. ПД не возникает, т.к. нет регенеративной деполяризации Натриевые каналы открываются не одновременно и ток натрия в клетку компенсируется током калия из клетки. ПД не возникает, т.к. нет регенеративной деполяризации Аккомодация проявляется в увеличении пороговой силы стимула при уменьшении крутизны нарастании стимула – чем меньше крутизна, тем больше пороговая сила В основе аккомодации ткани лежит процесс инактивации натриевых каналов. Поэтому чем меньше крутизна нарас- тания стимула – тем больше инактивируется натриевых каналов – происходит смещение уровня критической деполяризации и возрастает пороговая сила стимула. Если крутизна нарастания стимула будет меньше порого- вой величины, то ПД не возникает и будет наблюдаться только локальный ответ.


ЭЛЕКТРОТОН ФИЗИОЛОГИЧЕСКИЙ Изменения возбудимости мембраны при длительном воздействии на нее постоянного тока подпороговой силы. катэлектротон -При этом под катодом развивается катэлектротон - увеличение возбудимости. анэлектротонпод анодом – анэлектротон - снижение возбудимости.


Электротон. А – катэлектротон. 1 – начальное повышение возбудимости: V1 V. Б – анэлектротон, понижение возбудимости: V1 > V. V. Б – анэлектротон, понижение возбудимости: V1 > V."> V. Б – анэлектротон, понижение возбудимости: V1 > V."> V. Б – анэлектротон, понижение возбудимости: V1 > V." title="Электротон. А – катэлектротон. 1 – начальное повышение возбудимости: V1 V. Б – анэлектротон, понижение возбудимости: V1 > V."> title="Электротон. А – катэлектротон. 1 – начальное повышение возбудимости: V1 V. Б – анэлектротон, понижение возбудимости: V1 > V.">


Катодическая депрессия по Вериго Если потоянный ток действует на мембрану длительное время, то повышенная возбуди- мость под катодом изменяется на снижение возбудимости. В основе этого явления лежит явление аккомодации ткани, т.к. постоянный ток можно представить как ток с бесконечно малой крутизной нарастания.

Сдвиги в величине МП при возбуждении связаны с изменениями ионной проницаемости.

Если в состоянии покоя проницаемость мембраны для ионов К+ выше, чем для ионов Nа+, то при действии раздражителя проницаемость для ионов Nа+ повышается и, в конечном итоге, становится в 20 раз выше проницаемости для ионов К+. В результате превышения потока ионов Na+ из внешнего раствора в цитоплазму, по сравнению с направленным наружу калиевым током, происходит перезарядка мембраны.

Повышение проницаемости мембраны для ионов Na+ продолжается лишь очень короткое время, а затем она падает, а для ионов K+ проницаемость возрастает. Понижение натриевой проницаемости называют натриевой инактивацией . Возрастающий поток ионов K+ из цитоплазмы и натриевая инактивация приводят к реполяризации мембраны (фаза реполяризации) (Рис.4).

Рис. 4. Временной ход изменений натриевой (gNa) и калиевой (gk) проницаемости мембраны гигант­ского аксона кальмара во время генерации потен­циала действия (V).

Следует отметить, что в генезе восходящей фазы ПД у ракообразных и гладких мышцах позвоночных ведущую роль играют ионы Ca++. В клетках миокарда начальный подъем потенциала действия связан с повышением проницаемости мембраны для Na+, а плато ПД обусловлено повышением проницаемости для ионов Ca++ (Рис.5)

Рис.5. Потенциал действия мышечного волокна миокарда собаки

Ионные каналы.

Изменение проницаемости клеточной мембраны для ионов Nа+ и K+ при возбуждении связано с активацией и инактивацией Na – и K – каналов, обладающих двумя важными свойствами:

1. Избирательной проницаемостью (селективностью) по отношению к определенным ионам;

2. Электроуправляемостью, т.е. зависимостью от электрического поля мембраны.

Процесс открывания и закрывания каналов носит вероятностный характер. Изменение мембранного потенциала лишь определяет среднее число открытых каналов. Ионные каналы образованы макромолекулами белков, пронизывающими липидный бислой мембраны.

Данные же о функциональной организации каналов строятся на исследованиях электрических явлений в мембранах и влияния на каналы различных химических агентов, как токсины, ферменты, лекарственные вещества.

Селективность электровозбудимых ионных каналов нервных и мышечных клеток по отношению к ионам натрия, калия, кальция, хлора не абсолютная: название канала, например, натриевый, указывает лишь на ион, для которого данный канал наиболее проницаем.

Для количественной оценки зависимости ионных проводимостей от величины генерируемого потенциала применяется "метод фиксации потенциала". Сущность метода заключается в насильственном поддержании мембранного потенциала на любом заданном уровне. С этой целью на мембрану подается ток равный по величине, но обратный по знаку ионному току и, измеряя этот ток при различных потенциалах можно проследить зависимость потенциала от ионных проводимостей мембраны. При этом используются специфические блокаторы тех или иных каналов с целью выделить необходимый компонент из общего ионного тока.

На рис.6 показаны изменения натриевой (gNa) и калиевой (gK) проницаемости мембраны нервного волокна во время фиксированной деполяризации.

Рис. 6. Изменение при фиксированной деполяризации

Установлено, что деполяризация связана с быстрым увеличением натриевой проводимости (gNa), которая за доли миллисекунд достигает максимума, а затем медленно снижается. Снижение и прекращение натриевого тока происходит на фоне еще не завершившегося ПД.

После окончания деполяризации способность натриевых каналов вновь открываться восстанавливается постепенно в течение десятков мсек.

Увеличение проницаемости клеточной мембораны для Na+ и K+определяется состоянием воротного мехнизма селективных, электроуправляемых каналов. В некоторых клетках, в частности в кардиомиоцитах, в волокнах гладкой мышцы важную роль в возникновении ПД играют управляемые каналы для Са ++. Воротный механизм Na – каналов расположен на внешней и внутренней сторонах клеточной мембраны, воротный механизм K – каналов на внутренней (К+ движется из клетки наружу).

Каналы для Na+ имеет наружное и внутреннее расширение ("устья") и короткий суженный участок (селективный фильтр) для отбора катионов по их размеру и свойствам. В области внутреннего конца натриевый канал снабжен двумя типами "ворот" - быстрыми активационными (m – "ворота") и медленными инактивационными (h – "ворота").

Рис. 7. Схематическое изображение электровозбудимого натриевого канала.

Канал (1) образован макромолекулой белка 2), суженная часть которого соответствует «селективному фильтру». В канале имеются активационные (гп) и инакгивационные (h) «ворота», которые управляются электрическим полем мембраны. При потенциале покоя (а) наиболее вероятным является положение «закры­то» для активационных ворот и положение «открыто» для инактивационных. Деполяризация мембраны (б) приводит к быстрому открыванию гп-«ворот» и медленному закрыванию п-«ворот», поэтому в начальный момент деполяризации обе пары «ворот» оказываются открытыми и через канал могут двигаться ионы в соот­ветствии с их концентрационными и электрическими градиентами. При продолжающейся деполяризации (it) ииактивацмонные «ворота» закрываются и капач переходит в состояние инактивации.

В условиях покоя активационные m – ворота закрыты, инактивационные h – ворота преимущественно (около 80%) открыты; закрыты также калиевые активационные ворота, инактивационных ворот для К+ нет.

Когда деполяризация клетки достигает критической величины (Екр, критический уровень деполяризации – КУД), которая обычно составляет –50 мВ проницаемость мембраны для Na+ резко возрастает: открывается большое число потенциалзависимых m– ворот Na – каналов и Na+ лавиной устремляется в клетку. Через один открытый натриевый канал за 1 мс проходит до 6000 ионов. В результате интенсивного тока Na+ внутрь клетки деполяризация проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Na+: открываются все новые и новые активационные m – ворота Na+ - каналов, что придает току Na+ в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

Во вторую фазу ПД (фаза инверсии) происходит перезарядка мембраны: заряд внутри клетки становится положительным, снаружи – отрицательным. Активационные m – ворота Na+ - каналов еще открыты и некоторое время (доли миллисекунды) Na+ продолжает входить в клетку, о чем свидетельствует продолжающееся нарастание ПД. Прекращение роста ПД происходит в результате закрытия натриевых инактивационных h – ворот и открытия ворот К – каналов, т.е. вследствие увеличения проницаемости для K+ и резкого возрастания выхода его из клетки.

Рис. 8 Состояние натриевых и калиевых ка­налов в различные фазы потенциалов дей­ствия (схема) Объяснение в тексте.

Рис.8.Состояние натриевого канала в различные фазы потенциала действия.

а) в состоянии покоя активационные m – "ворота" закрыты, инактивационные h- "ворота" открыты.

б) деполяризация мембраны сопровождается быстрым открыванием активационных "ворот" и медленным закрыванием инактивационных "ворот".

в) при продолжительной деполяризации инактивационные каналы закрываются (состояние инактивации).

г) после окончания деполяризации h -"ворота" медленно открываются, а m – "ворота" быстро закрываются, канал возвращается в исходное состояние.

Начальный подьем gNа связан с открыванием m – "ворот" (процесс активации), последующее падение gNа во время продолжающейся деполяризации мембраны - с закрыванием

h – "ворот" (процесс инактивации).

Таким образом, восходящая фаза ПД связана с повышением натриевой проницаемости, которая, в свою очередь, увеличивает начальную деполяризацию. Это сопровождается открыванием новых натриевых каналов, и повышением gNa. Нарастающая при этом деполяризация, в свою очередь, обуславливает дальнейшее повышение gNa. Схематически это может быть представлено следующей следующим образом:

Раздражитель Деполяризация мемабраны

Входящий Повышение

натриевый ток натриевой проницаемости.

Такой круговой процесс получил название регенеративной (т.е. самообновляющейся) деполяризации.

Теоретически регенеративная деполяризация должна была бы завершиться повышением внутреннего потенциала клетки до величины равновесного потенциала для ионов Na+. Однако, пик потенциала действия (овершут) никогда не достигает величины ENa, поскольку под влиянием деполяризации начинается медленная активация калиевых каналов и рост gK, приводящий к реполяризации и даже временной следовой гиперполяризации.

Под влиянием реполяризации происходит медленное устранение натриевой инактивации, открываются инактивационные ворота и натриевые каналы возвращаются в исходное состояние.

Специфическим блокатором натриевых каналов является тетродотоксин - яд рыбы – собаки (иглобрюха). Используя радиактивный тетродотоксин, подсчитали плотность натриевых каналов в мембране. У различных клеток она варьирует от десятков до десятков тысяч натриевых каналов на квадратный микрон мембраны.

Селективность калиевых каналов выше селективности натриевых: они практически не проницаемы для Na+. Диаметр их селективного фильтра около 0,3нм. Активация калиевых каналов характеризуется более медленной кинетикой, чем активация натриевых каналов. Блокаторами калиевых каналов являются органический катион - тетраэтиламмоний и аминопиридины.

Блокаторами кальциевых каналов, характеризующихся также медленной кинетикой процессов активации, являются некоторые органические соединения, как верапамил, нифедипин. Они используются в клинической практике для подавления повышенной электрической активности гладких мышц.

Во время импульсной активности через каждый квадратный микрон мембраны гигантского аксона кальмара в протоплазму поступает 20 000 ионов Nа+ и столько же ионов K+ покидает волокно.

При возбуждении и повышении внутриклеточной концентрации ионов Na+ активируется Na-, K - насос. Благодаря работе насоса, нарушенное при возбуждении неравенство ионных концентраций полностью восстанавливается. Скорость выведения Nа+ из цитоплазмы активным ионным транспортом относительно мала, в 200 раз ниже скорости движения этих ионов через мембрану по концентрационному градиенту.

В тех случаях, когда имеет место разделение зарядов и положительные заряды расположены в одном месте, а отрицательные в другом, физики говорят о поляризации заряда. Физики употребляют термин по аналогии с разноименными магнитными силами, которые скапливаются на противоположных концах, или полюсах (название дано потому, что свободно двигающаяся намагниченная полоска указывает своими концами в стороны географических полюсов) полосового магнита. В обсуждаемом случае мы имеем концентрацию положительных зарядов на одной стороне мембраны и концентрацию отрицательных зарядов на другой стороне мембраны, то есть мы можем говорить о поляризованной мембране.

Однако в любом случае, когда имеет место разделение зарядов, немедленно возникает и электрический потенциал. Потенциал является мерой силы, которая стремится сблизить разделенные заряды и ликвидировать поляризацию. Электрический потенциал поэтому называют также электродвижущей силой, которая сокращенно обозначается ЭДС.

Электрический потенциал называется потенциалом именно потому, что он в действительности не приводит в движение заряды, так как существует противодействующая сила, удерживающая противоположные электрические заряды от сближения. Эта сила будет существовать до тех пор, пока расходуется энергия па ее поддержание (что и происходит в клетках). Таким образом, сила, стремящаяся сблизить заряды, обладает лишь возможностью, или потенцией, сделать это, и такое сближение происходит только в том случае, когда энергия, затрачиваемая на разделение зарядов, ослабевает. Электрический потенциал измеряют в единицах, названных вольтами, в честь Вольта, человека, создавшего первую в мире электрическую батарею.

Физики сумели измерить электрический потенциал, существующий между двумя сторонами клеточной мембраны. Он оказался равным 0,07 вольт. Можно сказать также, что этот потенциал равен 70 милливольтам, так как милливольт равен одной тысячной вольта. Конечно, это очень маленький потенциал по сравнению со 120 вольтами (120 000 милливольт) напряжения в сети переменного тока или по сравнению с тысячами вольт напряжения в линиях электропередачи. Но это все же удивительный потенциал, учитывая материалы, которые имеет в своем распоряжении клетка для построения электрических систем.

Любая причина, прерывающая деятельность натриевого насоса, приведет к резкому выравниванию концентраций ионов натрия и калия по обе стороны мембраны. Это, в свою очередь, автоматически приведет к выравниванию зарядов. Таким образом, мембрана станет деполяризованной. Конечно, это происходит при повреждении или гибели клетки. Но существуют, правда, три вида стимулов, которые могут вызвать деполяризацию, не причиняя клетке никакого вреда (если, конечно, эти стимулы не слишком сильны). К таким лам относятся механические, химические и электрические.


Давление - это пример механического стимула. Давление на участок мембраны приводит к а расширению и (по пока не попятным причинам) вызовет в этом месте деполяризацию. Высокая температура приводит к расширению мембраны, холод сокращает ее, и эти механические изменения тоже вызывают деполяризацию.

К такому же результату приводит воздействие на мембрану некоторых химических соединений и воздействие на нее слабых электрических токов. (В последнем случае причина деполяризации представляется наиболее очевидной. В конце концов, почему электрический феномен поляризации нельзя изменить с помощью приложенного извне электрического потенциала?)

Произошедшая в одном месте мембраны деполяризация служит стимулом для распространения деполяризации по мембране. Ион натрия, хлынувший в клетку в месте, где произошла деполяризация прекратилось действие натриевого насоса, вытесняет наружу ион калия. Ионы натрия меньше размерами и более подвижны, чем ионы калия. Поэтому в клетку входит больше ионов натрия, чем выходит из нее ионов калия. В результате кривая деполяризации пересекает нулевую отметку и поднимается выше. Клетка снова оказывается поляризованной, но с обратным знаком. На какой-то момент клеш приобретает внутренний положительный заряд, благодаря присутствию в ней избытка ионов натрия. На внешней стороне мембраны появляется маленький отрицательный заряд.

Противоположно направленная поляризация может служить электрическим стимулом, который парализует работу натриевого насоса в участках, примыкающих к месту первоначального стимула. Эти примыкающие участки поляризуются, потом происходит поляризация с обратным знаком и возникает деполяризация в более отдаленных участках. Таким образом, волна деполяризации прокатывается по всей мембране. В начальном участке поляризация с обратным знаком не может продолжаться долго. Ионы калия продолжают выходить из клетки, постепенно их поток уравнивается с потоком входящих ионов натрия. Положительный заряд внутри клетки исчезает. Это исчезновение обратного потенциала в какой-то степени реактивирует натриевый насос в этом месте мембраны. Ионы натрия начинают выходить из клетки, и в нее начинают проникать ионы калия. Данный участок мембраны вступает в фазу реполяризации. Так как эти события происходят во всех участках деполяризации мембраны, то вслед за волной деполяризации по мембране прокатывается волна реполяризации.

Между моментами деполяризации и полной ре-поляризации мембраны не отвечают на обычные стимулы. Этот период времени называется рефракторным периодом. Он длится очень короткое время малую долю секунды. Волна деполяризации, прошедшая через определенный участок мембраны, делает этот участок невосприимчивым к возбуждению. Предыдущий стимул становится в каком-то смысле единичным и изолированным. Как именно мельчайшие изменения зарядов, участвующие в деполяризации, реализуют такой ответ, неизвестно, но факт остается фактом - ответ мембраны на стимул изолирован и единичен. Если мышцу стимулировать в одном месте небольшим электрическим разрядом, то мышца сократится. Но сократится не только тот участок, к которому было приложено электрическое раздражение; сократится все мышечное волокно. Волна деполяризации проходит по мышечному волокну со скоростью от 0,5 до 3 метров в секунду, в зависимости от длины волокна, и этой скорости достаточно, чтобы создалось впечатление, что мышца сокращается, как одно целое.

Этот феномен поляризации-деполяризации-реполяризации присущ всем клеткам, но в некоторых он выражен больше. В процессе эволюции появились клетки, которые извлекли выгоды из этого явления. Эта специализация может пойти в двух направлениях. Во-первых, и это происходит весьма редко, могут развиться органы, которые способны создавать высокие электрические потенциалы. При стимуляции деполяризация реализуется не мышечным сокращением или другим физиологическим ответом, а возникновением электрического тока. Это не пустая трата энергии. Если стимул -это нападение врага, то электрический разряд может ранить или убить его.

Существует семь видов рыб (некоторые из них костистые, некоторые относятся к отряду хрящевых, являясь родственниками акул), специализированных именно в этом направлении. Самый живописный представитель - это рыба, которую в народе называют «электрическим угрем», а в науке весьма символическим именем - Electrophorus electricus. Электрический угорь - обитатель пресных вод, и встречается в северной части Южной Америки - в Ориноко, Амазонке и ее притоках. Строго говоря, эта рыба не родственница угрям, ее назвали так за длинный хвост, который составляет четыре пятых тела этого животного, длина которого составляет от 6 до 9 футов. Все обычные органы этой рыбы умещаются в передней части туловища длиной около 15 - 16 дюймов.

Более половины длинного хвоста занято последовательностью блоков модифицированных мышц, которые образуют «электрический орган». Каждая из этих мышц производит потенциал, который не превышает потенциал обычной мышцы. Но тысячи и тысячи элементов этой «батареи» соединены таким образом, что их потенциалы складываются. Отдохнувший электрический угорь способен накопить потенциал порядка 600 - 700 вольт и разряжать его со скоростью 300 раз в секунду. При утомлении этот показатель снижается до 50 раз в секунду, но такой темп угорь может выдержать в течение длительного времени. Электрический удар достаточно силен для того, чтобы убить мелкое животное, которыми питается эта рыба, или чтобы нанести чувствительное поражение животному более крупному, которое по ошибке вдруг решит съесть электрического угря.

Электрический орган - это великолепное оружие. Возможно, к такому электрошоку с удовольствием прибегли бы и другие животные, но эта батарея занимает слишком много места. Представьте себе, как мало животных имели бы крепкие клыки и когти, если бы они занимали половину массы их тела.

Второй тип специализации, предусматривающий использование электрических явлений, протекающих па клеточной мембране, заключается не в усилении потенциала, а в увеличении скорости распространения волны деполяризации. Возникают клетки с удлиненными отростками, которые представляют собой почти исключительно мембранные образования. Главная функция этих клеток - очень быстрая передача стимула от одной части тела к другой. Именно из таких клеток состоят нервы - те самые нервы, с рассмотрения которых началась эта глава.

НЕЙРОН

Нерпы, которые мы можем наблюдать невооруженным глазом, конечно же не являются отдельными клетками. Это пучки нервных волокон, иногда в этих пучках содержится очень много волокон, каждое из которых представляет собой часть нервной клетки. Все волокна пучка идут в одном направлении и, ради удобства и экономии места, связаны между собой, хотя отдельные волокна могут выполнять совершенно разные функции. Точно так же отдельные изолированные электрические провода, выполняющие совершенно разные задачи, для удобства объединяют в один электрический кабель. Само нервное волокно является частью нервной клетки, которую также называют нейроном. Это греческое производное латинского слова «нерв». Греки эпохи Гиппократа приложили это слово к нервам в истинном смысле и к сухожилиям. Теперь этот термин обозначает исключительно индивидуальную нервную клетку. Основная часть нейрона - тело практически мало чем отличается от всех остальных клеток организма. Тело содержит ядро и цитоплазму. Самым большим отличием нервной клетки от прочих клеток является наличие длинных выростов из тела клетки. От большей части поверхности тела нервной клетки отходят выросты, которые ветвятся на протяжении. Эти ветвящиеся выросты напоминают крону дерева и называются дендритами (от греческого слова «дерево»).

На поверхности тела клетки есть одно место, из которого выходит один, особенно длинный, отросток, который не ветвится на всем своем (иногда огромном) протяжении. Этот отросток называется аксоном. Почему он так называется, я объясню позже. Именно аксонами представлены типичные нервные волокна нервного пучка. И хотя аксон микроскопически тонок, его длина может составить несколько футов, что представляется необычным, если учесть, что аксон - это всего лишь часть единственной нервной клетки.

Возникшая в какой-либо части нервной клетки деполяризация с большой скоростью распространяется по волокну. Волна деполяризации, распространяющаяся по отросткам нервной клетки, называется нервным импульсом. Импульс может распространяться по волокну в любом направлении; так, если нанести стимул на середину волокна, то импульс будет распространяться в обе стороны. Однако в живых системах практически всегда получается так, что импульсы распространяются по дендритам только в одну сторону - к телу клетки. По аксону же импульс всегда распространяется от тела клетки.

Скорость распространения импульса по нервному волокну была впервые измерена в 1852 году немецким ученым Германом Гельмгольцем. Для этого он наносил стимулы на нервное волокно па разных расстояниях от мышцы и регистрировал время, через которое мышца сокращалась. Если расстояние увеличивалось, то удлинялась и задержка, после которой наступало сокращение. Задержка соответствовала времени, которое требовалось импульсу, чтобы пройти дополнительное расстояние.

Довольно интересен тот факт, что за шесть лет до опыта Гельмгольца знаменитый немецкий физиолог Иоганнес Мюллер в припадке консерватизма, столь характерного для ученых на склоне их карьеры, категорически заявлял, что никто и никогда не сможет измерить скорость проведения импульса по нерву.

В разных волокнах скорость проведения импульса не одинакова. Во-первых, скорость, с которой импульс движется по аксону, грубо зависит от его толщины.

Чем толще аксон, тем больше скорость распространения импульса. В очень тонких волокнах импульс движется по ним довольно медленно, со скоростью двух метров в секунду и даже меньше. Не быстрее, чем, скажем, распространяется волна деполяризации по мышечным волокнам. Очевидно, чем быстрее должен реагировать организм на тот или иной стимул, тем желательнее высокая скорость проведения импульсов. Один из способов достижения такого состояния - это увеличение толщины нервных волокон. В теле человека самые тонкие волокна имеют диаметр 0,5 микрона (микрон - это одна тысячная часть миллиметра), а самые толстые - 20 микрон, то есть в 40 раз больше. Площадь поперечного сечения толстых волокон в 1600 раз больше площади поперечного сечения тонких волокон.

Можно подумать, что поскольку млекопитающие обладают лучше развитой нервной системой, чем другие группы животных, то нервные импульсы распространяются у них с наибольшей скоростью, а нервные волокна толще, чем у всех остальных биологических видов. Но в действительности это не так. У низших животных, тараканов, нервные волокна толще, чем у людей.

Самыми толстыми нервными волокнами обладают самые развитые из моллюсков - кальмары. Крупные кальмары вообще, вероятно, являются самыми развитыми и высокоорганизованными животными из всех беспозвоночных. Учитывая их физические размеры, мы не удивляемся тому, что им требуется высокая скорость проведения импульсов и очень толстые аксоны. Нервные волокна, идущие к мышцам кальмара, называются гигантскими аксонами и достигают в диаметре 1 миллиметра. Это в 50 раз больше диаметра самого толстого аксона млекопитающих, а по площади поперечного сечения аксоны кальмара превосходят аксоны млекопитающих в 2500 раз. Гигантские аксоны кальмара - это дар божий для нейрофизиологов, которые могут легко ставить на них опыты (например, измерять потенциалы на мембранах аксонов), что очень трудно делать на чрезвычайно тонких аксонах позвоночных.

Тем не менее, почему все-таки беспозвоночные превзошли позвоночных толщиной нервных волокон, хотя позвоночные обладают более развитой нервной системой?

Ответ заключается в том, что скорость проведения импульсов по нервам у позвоночных зависит не только от толщины аксонов. Позвоночные животные получили в свое распоряжение более изощренный способ повышения скорости проведения импульсов по аксонам.

У позвоночных нервные волокна на ранних стадиях развития организма попадают в окружение так называемых сателлитных клеток. Некоторые из этих клеток называются шванновскими (по имени немецкого зоолога Теодора Шваина, одного из основоположников клеточной теории жизни). Шванновские клетки обертываются вокруг аксона, образуя все более и более плотную спираль, одевая волокно жироподобной оболочкой, которая называется миелиновой оболочкой. В конечном счете шванковские клетки образуют вокруг аксона тонкую оболочку, называемую неврилеммой, которая, тем не менее, содержит ядра исходных шванновских клеток. (Кстати, сам Шванн и описал эти неврилеммы, которые иногда в его честь называют шванновской оболочкой. Мне кажется, что очень немузыкально и оскорбительно для памяти великого зоолога звучит термин, которым обозначают опухоль, исходящую из неврилеммы. Ее называют шванномой.)

Одна отдельная шванновская клетка окутывает только ограниченный участок аксона. В результате шванновские оболочки охватывают аксон отдельными секциями, между которыми расположены узкие участки, в которых миелиновая оболочка отсутствует. В результате под микроскопом аксон выглядит как связка сосисок. Участки, не покрытые миелином, сужения этой связки, называются перехватами Ранвье, в честь французского гистолога Луи Антуана Ранвье, который описал их в 1878 году. Таким образом, аксон похож на тонкий стержень, продетый сквозь последовательность цилиндров вдоль их осей. Axis на латинском языке означает «ось», отсюда происходит и название этого отростка нервной клетки. Суффикс -он присоединен, видимо, по аналогии со словом «нейрон».

Функция миелиновой оболочки не вполне ясна. Самое простое предположение относительно ее функции состоит в том, что она служит своеобразным изолятором нервного волокна, уменьшая утечку тока в окружающую среду. Такие утечки возрастают по мере того, как волокно становится тоньше, и присутствие изолятора позволяет волокну оставаться тонким без увеличения потери потенциала. Доказательства в пользу такого факта основаны на том, что миелин преимущественно состоит из липидных (жироподобных) материалов, которые действительно являются превосходными электрическими изоляторами. (Именно этот материал придает нерву белый цвет. Те; о нервной клетки окрашено в серый цвет.)

Однако если бы миелин выполнял только функции электрического изолятора, то с этой работой могли бы справиться и более простые жировые молекулы. Но как выяснилось, химический состав миелина очень сложен. Из каждых пяти молекул миелина две - молекулы холестерола, еще две - молекулы фосфолипидов (жировые молекулы, содержащие фосфор), а пятая молекула - цереброзид (сложная жироподобная молекула, содержащая сахар). Присутствуют в миелине и другие необычные вещества. Представляется весьма вероятным, что миелин выполняет в нервной системе отнюдь не только функции электрического изолятора.

Высказывалось предположение, что клетки миелиновой оболочки поддерживают целостность аксона, поскольку он вытянут на такое большое расстояние от тела нервной клетки, что, вполне вероятно, может утратить нормальную связь с ядром своей нервной клетки. Известно, что ядро жизненно необходимо для поддержания нормальной жизнедеятельности любой клетки и всех ее частей. Возможно, ядра шванновских клеток берут на себя функцию нянек, которые питают аксон на тех участках, которые они окутывают. Ведь аксоны нервов, даже лишенных миелина, покрыты топким слоем шванновских клеток, в которых, естественно, есть ядра.

Наконец, миелиновая оболочка каким-то образом ускоряет проведение импульса по нервному волокну. Волокно, покрытое миелиновой оболочкой, проводит импульс намного быстрее, чем волокно такого же диаметра, но лишенное миелиновой оболочки. Вот почему позвоночные выиграли эволюционную схватку с беспозвоночными. Они сохранили тонкие нервные волокна, но значительно увеличили скорость проведения импульсов по ним.

Миелинизированные нервные волокна млекопитающих проводят нервный импульс со скоростью около 100 м/с, или, если угодно, 225 миль в час. Это довольно приличная скорость. Самое большое расстрояние, которое приходится преодолевать импульсам в нервах млекопитающих, - это 25 метров, которые отделяют голову синего кита от его хвоста. Нервный импульс проходит этот неблизкий путь за 0,3 с. Расстояние от головы до большого пальца ноги у человека импульс по миелинизированному волокну проходит за одну пятидесятую долю секунды. В том, что касается скоростей передачи информации в нервной и эндокринной системах, видна огромная и вполне очевидная разница.

При рождении ребенка процесс мнелинизации нервов в его организме еще не завершен, и различные функции не развиваются должным образом до тех пор, пока нужные нервы не будут миелинизированы. Так, ребенок сначала ничего не видит. Функция зрения устанавливается только после миелинизации зрительного нерва, которая, к счастью, не заставлет себя ждать. Точно так же нервы, идущие к мышцам рук и ног, остаются не миелинизированными в течение первого года жизни, поэтому координация движений, необходимая для самостоятельного передвижения, устанавливается только к этому времени.

Иногда взрослые люди страдают так называемой «демилиенизирующей болезнью», при которой происходит дегенерация участков миелина с последующей утратой функции соответствующего нервного волокна. Лучше всего изучено одно из таких заболевании, известное как рассеянный склероз. Такое название дано этой болезни потому, что при ней в различных участках нервной системы появляются очаги дегенерации миелина с замещением его более плотной рубцовой тканью. Такая демиелинизация может развиться в результате действия на миелин какого-то белка, присутствующего в крови больного. Представляется, что этот белок является антителом, представителем класса веществ, которые в норме обычно взаимодействуют только с чужеродными белками, но часто становятся причиной симптомов состояния, которое мы знаем как аллергию. По сути дела, у больного рассеянным склерозом развивается аллергия к самому себе, и эта болезнь, быть может, является примером аутоаллергического заболевания. Поскольку чаще всего поражаются чувствительные нервы, то самыми распространенными симптомами рассеянного склероза являются двоение в глазах, утрата тактильной чувствительности и другие расстройства чувствительности. Рассеянный склероз чаще всего поражает людей в возрасте от 20 до 40 лет. Болезнь может прогрессировать, то есть могут поражаться все новые и новые нервные волокна, и в конце концов наступает смерть. Однако прогрессирование заболевания может быть медленным, и многие больные живут больше десяти лет с момента установления диагноза.