Что представляет электрический ток. Что такое электрический ток и каковы условия его существования. Что представляет собой ток

Абстрактное понятие об электрическом токе есть у каждого человека. Для электрического прибора источник питания - это нечто вроде источника воздуха для любого дышащего организма. Но на этих сравнениях понимание природы явления ограничивается, и только специалисты понимают суть глубже.

  • Видеосюжет по теме
  • Комментарии

В школьной программе все проходят курс физики, в котором описаны основные понятия и законы электричества. Сухой, научный подход не вызывает интерес у детей, поэтому большинство взрослых не имеют никакого представления о том, что из себя представляет электрический ток, почему он возникает, как у него единица измерения, и как вообще что-то может двигаться сквозь неподвижные металлические провода, да еще заставлять работать электроприборы.

Простыми словами об электрическом токе

Стандартное определение из школьного учебника по физике лаконично описывает явление электрического тока. Но если говорить откровенно, то полноценно понять это можно, если изучить предмет гораздо глубже. Ведь информация изложена на другом языке - научном. Гораздо легче разобраться в природе физического явления, если описать все привычным языком, понятному любому человеку. Например, ток в металле.

Начать следует с того, что все, что мы считаем твердым и неподвижным, является таким только в нашем представлении. Кусок металла, лежащий на земле - это монолитное неподвижное тело в человеческом понимании. Для аналогии представим нашу планету в космосе, взглянув на нее с поверхности Марса. Земля кажется целостным, неподвижным телом. Если же приблизиться к ее поверхности, то станет очевидно, что это не монолитный кусок материи, а постоянное движение: вода, газы, живые существа, литосферные плиты - все это безостановочно перемещается, хотя из далекого космоса этого и не видно.

Вернемся к нашему лежащему на земле куску металла. Он неподвижен, потому что мы смотрим на него со стороны как на монолитный объект. На атомном же уровне он состоит из постоянно движущихся мельчайших элементов. Они бывают разные, но среди всех, нам интересны электроны, которые и создают в металлах электромагнитное поле, порождающее тот самый ток. Слово «ток» нужно понимать буквально, потому что когда элементы с электрическим зарядом перемещаются, то есть «текут», из одного заряженного объекта в другой - тогда и происходит «электрический ток».

Разобравшись с основными понятиями, можно вывести общее определение:

Электрический ток - это поток заряженных частиц, движущихся из тела с более высоким зарядом в тело с более низким зарядом.

Чтобы еще точнее понять суть, нужно углубиться в детали и получить ответы на несколько основных вопросов.

Видео сюжет

Ответы на главные вопросы об электрическом токе

После формулировки определения, возникает несколько логичных вопросов.

  1. Что заставляет ток «течь», то есть перемещаться?
  2. Если мельчайшие элементы металла постоянно перемещаются, то почему он не деформируется?
  3. Если что-то перетекает из одного объекта в другой, то меняется ли масса этих объектов?

Ответ на первый вопрос прост. Как вода течет с высокой точки в низкую - так и электроны будут течь из тела с высоким зарядом в тело с низким, повинуясь законам физики. А «заряд» (или же потенциал) - это количество электронов в теле, и чем их больше - тем заряд выше. Если между двумя телами с разными зарядами будет проложен контакт - электроны из более заряженного тела потекут в менее заряженное. Так возникнет ток, который закончится тогда, когда заряды двух контактирующих тел уравняются.

Чтобы понять, почему провод не меняет структуру, несмотря на то, что в нем постоянно происходит движение, нужно представить его в виде большого дома, в котором живут люди. Размер дома не будет меняться о того, сколько людей в него заходят и выходят, а также перемещаются внутри. Человек в данном случае аналог электрона в металле - он свободно перемещается и не имеет особой массы по сравнению с целым зданием.

Если электроны перемещаются из одного тела в другое - почему масса тел не меняется? Дело в том, что вес электрона настолько мал, что, даже если удалить из тела все электроны, его масса не изменится.

Что такое единица измерения силы тока

  • Сила тока.
  • Напряжение.
  • Сопротивление.

Если попытаться описать понятие силы тока простыми словами, лучше всего представить поток автомобилей, проходящих через тоннель. Автомобили - это электроны, а тоннель - провод. Чем больше автомобилей проходит в один момент времени через поперечное сечение тоннеля - тем больше сила тока, которая измеряется прибором под названием «амперметр» в Амперах (А), а в формулах обозначается буквой (I).

Напряжение - это относительная величина, выражающая разницу зарядов тел, между которыми идет ток. Если у одного объекта заряд очень высокий, а другого очень низкий, то между ними будет высокое напряжение, для измерения которого используют прибор «вольтметр» и единицы под названием Вольт (V). В формулах идентифицируется буквой (U).

Сопротивление характеризует способность проводника, условно медного провода, пропускать через себя определенное количество тока, то есть электронов. Оказывающий сопротивление проводник генерирует тепло, расходуя часть энергии проходящего через него тока, тем самым понижая его силу. Сопротивление вычисляют в Омах (Ом), а в формулах используют букву (R).

Формулы для вычисления характеристик тока

Применяя три физические величины, можно вычислять характеристики тока, используя Закона Ома. Он выражается формулой:

Где I - сила тока, U - напряжение на участке цепи, R - сопротивление.

Из формулы мы видим, что сила тока вычисляется путем деления величины напряжения на величину сопротивления. Отсюда мы имеем формулировку закона:

Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника.

Из данной формулы математическим путем можно вычислить другие ее составляющие.

Сопротивление:

Напряжение:

Важно отметить, что формула действительна только для конкретного участка цепи. Для полной, замкнутой цепи, а также других частных случаев есть другие законы Ома.

Видео сюжет

Влияние тока на разные материалы и живых существ

Разные химические элементы под действием тока ведут себя по-разному. Некоторые сверхпроводники не оказывают сопротивления движущимся сквозь них электронам, не вызывая никакой химической реакции. Металлы же при излишнем для них напряжении могут разрушаться, плавиться. Диэлектрики, не пропускающие ток, вообще не вступают с ним ни в какое взаимодействие и тем самым ограждают от него окружающую среду. Это явление успешно используется человеком при изоляции проводов резиной.

Для живых организмов ток неоднозначное явление. Он способен оказывать как благотворное, так и разрушительное воздействие. Люди давно используют контролируемые разряды в лечебных целях: от легких стимулирующих мозговую деятельность разрядов, до мощных ударов электричеством, способных запустить остановившееся сердце и вернуть человека к жизни. Сильный разряд способен привести к серьезным проблемам со здоровьем, ожогам, отмиранию тканей и даже мгновенной смерти. Работая с электрическими приборами, нужно соблюдать правила техники безопасности.

В природе можно встретить немало явлений, в которых ключевую роль играет электричество: от глубоководных существ (электрический скат), умеющих бить током, до молний во время грозы. Человек давно осваивает эту природную силу и умело ею пользуется, благодаря чему и работает вся современная электроника.

Следует помнить, что явления природы могут быть как полезны, так и вредны для человека. Изучение со школьной скамьи и дальнейшее образование, помогает людям грамотно использовать явления мира на благо общества.

Электрический ток


Что называется электрическим током?

Упорядоченное (направленное) движение заряженных частиц называется электрическим током. Причем электрический ток, сила которого со временем не меняется, называется постоянным. Если же направление движения тока меняется и изменения. по величине и направлению повторяются в одной и той же последовательности, то такой ток называется переменным.

Что вызывает и поддерживает упорядоченное движение заряженных частиц?

Вызывает и поддерживает упорядоченное движение заряженных частиц электрическое поле. Имеет ли электрический ток определенное направление?
Имеет. За направление электрического тока принимают движение положительно заряженных частиц.

Можно ли непосредственно наблюдать движение заряженных частиц в проводнике?

Нет. Но о наличии электрического тока можно судить по тем действиям и явлениям, которыми он сопровождается. Например, проводник, по которому движутся заряженные частицы, нагревается, а в пространстве, окружающем проводник, образуется магнитное поле и магнитная стрелка вблизи проводника с электрическим током поворачивается. Кроме того, ток, проходящий через газы, вызывает их свечение, а проходя через растворы солей, щелочей и кислот, разлагает их на соетавнйе части.

Чем определяется сила электрического тока?

Сила электрического тока определяется количеством электричества, проходящим через поперечное сечение проводника в единицу времени.
Чтобы определить силу тока в цепи, надо количество протекающего электричества разделить на время, за которое оно протекло.

Что принято за единицу силы тока?

За единицу силы тока принята сила неизменяющегося тока, который, проходя по двум параллельны прямолинейным проводникам бесконечной длины ни тожно малого сечения, расположенным на рассто нии 1 м один от другого в вакууме, вызвал бы межд этими проводниками силу, равную 2 Ньютона н каждый метр. Эту единицу назвали Ампером в чест французского ученого Ампера.

Что принято за единицу количества электричества?

За единицу количества электричества принят Кулон (Ку), который проходит в одну секунду при силе тока в 1 Ампер (А).

Какими приборами измеряют силу электрического тока?

Силу электрического тока измеряют приборами, называемыми амперметрами. Шкалу амперметра градуируют в амперах и долях ампера по показаниям точных образцовых приборов. Силу тока отсчитывают по показаниям стрелки, которая перемещается вдоль шкалы от нулевого деления. Амперметр в электрическую цепь включают последовательно, с помощью двух клемм или зажимов, имеющихся на приборе. Что такое напряжение электрического тока?
Напряжение электрического тока есть разность потенциалов между двумя точками электрического поля. Оно равно работе, совершаемой-силами электрического поля при перемещении положительного заряда, равного единице, из одной точки поля в другую.

Основной единицей измерения напряжения является Вольт (В).

Каким прибором измеряют напряжение электрического тока?

Напряжение электрического тока измеряют прибо; ром, который называется вольтметром. В цепь электрического тока вольтметр включают параллельно. Сформулируйте закон Ома на участке цепи.

Что такое сопротивление проводника?

Сопротивление проводника есть физическая величина, характеризующая свойства проводника. Единицей сопротивления является Ом. Причем сопротивление в 1 Ом имеет провод, в котором устанавливается ток 1 А при напряжении на его концах 1 В.

Зависит ли сопротивление в проводниках от величины протекающего по ним электрического тока?

Сопротивление однородного металлического проводника определенной длины и сечения не зависит от величины протекающего по нему тока.

От чего зависит сопротивление в проводниках электрического тока?

Сопротивление в проводниках электрического тока зависит от длины проводника, площади его поперечного сечения и рода материала проводника (удельного сопротивления материала).

Причем сопротивление прямо пропорционально длине проводника, обратно пропорционально площади поперечного сечения и зависит, как было сказано выше, от материала проводника.

Зависит ли сопротивление в проводниках от температуры?

Да, зависит. Повышение температуры металлического проводника вызывает увеличение скорости теплового движения частиц. Это приводит к увеличению числа столкновений свободных электронов и, следовательно, к уменьшению времени свободного пробега, вследствие чего уменьшается удельная проводимость и увеличивается удельное сопротивление материала.

Температурный коэффициент сопротивления чистых металлов равен приблизительно 0,004 °С, что означает увеличение их сопротивления на 4% при повышении температуры на 10 °С.

При повышении температуры в электролита угле время свободного пробега тоже уменьшается, при этом увеличивается концентрация носителей з дов, вследствие чего удельное сопротивление их повышении температуры уменьшается.

Сформулируйте закон Ома для замкнутой цепи.

Сила тока в замкнутой цепи равна отноше электродвижущей силы цепи к ее полному сопроти нию.

Эта формула показывает, что сила тока зависит трех величин: электродвижущей силы Е, внешнег сопротивления R и внутреннего сопротивления г Внутреннее сопротивление не оказывает заметног влияния на силу тока, если оно мало по сравнению внешним сопротивлением. При этом напряже ние на зажимах источника тока приблизительно равн электродвижущей силе (ЭДС).

Что представляет собой электродвижущая сила (ЭДС)?

Электродвижущая сила представляет собой отношение работы сторонних сил по перемещению заряда вдоль цепи к заряду. Как и разность потенциалов, электродвижущую силу измеряют в вольтах.

Какие силы называются сторонними силами?

Любые силы, действующие на электрически заряженные частицы, за исключением потенциальных сил электростатического происхождения (т. е. кулонов- ских), называются сторонними силами. Именно за счет работы этих сил заряженные частицы приобретают энергию и отдают ее затем при движении в проводниках электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри источника тока, генератора, аккумулятора и т. д.

В результате на клеммах источника тока появляются заряды противоположного знака, а между клеммами-определенная разность потенциалов. Далее при замыкании цепи начинает действовать образование поверхностных зарядов, создающих электрическое поле по всей цепи, которое появляется в результате того, что при замыкании цепи почти сразу же на всей поверхности проводника возникает поверхностный заряд. Внутри источника заряды движутся под действием сторонних сил против сил электростатического поля (положительные от минуса, к плюсу), а по всей остальной цепи их приводит в движение электрическое поле.

Рис. 1. Электрическая цепь: 1- источник, электроэнергии (аккумулятор); 2 - амперметр; 3 - преемник энергии (лай па накаливания); 4 - электрические провода; 5 - однополюсные руСидьник; 6 - плавкие предохранители

К атегория: - Крановщикам и стропальщикам

Первые открытия, связанные с работой электричества, начались в VII веке до нашей эры​. Философ Древней Греции Фалес Милетский выявил, что при трении янтаря о шерсть она впоследствии способна притягивать легковесные предметы. С греческого «электричество» переводится как «янтарность». В 1820 г. Андре-Мари Ампером был установлен закон постоянного тока. В дальнейшем величину силы тока или то, в чём измеряется электрический ток, стали обозначать в амперах.

Значение термина

Понятие электрического тока можно найти в любом учебнике по физике. Электроток - это упорядоченное движение электрозаряженных частиц по направлению. Чтобы понять простому обывателю, что представляет собой электрический ток, следует воспользоваться словарём электрика. В нём термин расшифровывается как движение электронов по проводнику или ионов по электролиту.

В зависимости от движения электронов или ионов внутри проводника различают следующие виды токов:

  • постоянный;
  • переменный;
  • периодический или пульсирующий.

Основные величины измерения

Сила электрического тока - основной показатель, которым пользуются электрики в своей работе. От величины заряда, который протекает по электрической цепочке за установленный промежуток времени, зависит сила действия электрического течения. Чем большее количество электронов перетекло от одного начала источника к концу, тем больше будет перенесённый электронами заряд.

Величина, которая измеряется отношением электрического заряда, протекающего сквозь поперечное сечение частиц в проводнике, ко времени его прохождения. Заряд замеряется в кулонах, время - в секундах, а одна единица силы течения электричества определяется отношением заряда ко времени (кулона к секунде) или в амперах. Определение электрического тока (его силы) происходит путём последовательного включения двух клемм в электроцепь.

При работе электротока движение заряженных частиц совершается с помощью электрического поля и зависит от силы движения электронов. Величина, от которой зависит работа электротока, называется напряжением и определяется отношением работы тока в конкретной части цепи и заряда, проходящего по этой же части. Единица измерения вольт замеряется вольтметром, когда две клеммы прибора подключаются к цепи параллельно.

Величина электрического сопротивления имеет прямую зависимость от типа используемого проводника, его длины и поперечного сечения. Она измеряется в омах.

Мощность определяется отношением работы движения токов ко времени, когда происходила эта работа. Замеряют мощность в ваттах.

Такая физическая величина, как ёмкость, определяется отношением заряда одного проводника к разнице потенциалов между этим же проводником и соседним. Чем меньше напряжение при получении электрозаряда проводниками, тем больше их ёмкость. Измеряют её в фарадах.

Величина работы электричества на определённом промежутке цепочки находится с помощью произведения силы тока, напряжения и временного отрезка, при котором осуществлялась работа. Последняя замеряется в джоулях. Определение работы электротока происходит с помощью счётчика, который соединяет показания всех величин, а именно напряжения, силы и времени.

Техника электробезопасности

Знание правил электробезопасности поможет предупредить аварийную ситуацию и уберечь здоровье и жизнь человека. Так как электричество имеет свойство нагревать проводник, то всегда существует возможность возникновения опасной для здоровья и жизни ситуации. Для обеспечения безопасности в быту необходимо придерживаться следующих простых, но важных правил:

  1. Изоляция сети всегда должна быть исправной, чтобы избежать перегрузок или возможности возникновения коротких замыканий.
  2. Влага не должна попадать на электроприборы, провода, щитки и т. д. Также влажная среда провоцирует появление коротких замыканий.
  3. Обязательно следует делать заземление для всех электроустройств.
  4. Необходимо избегать перегрузки электропроводки, так как существует риск воспламенения проводов.

Техника безопасности при работе с электричеством предполагает использование прорезиненых перчаток, рукавиц, ковриков, разрядных устройств, приборов заземления рабочих участков, выключателей-автоматов или предохранителей с тепловой и токовой защитой.

Опытные электрики при возникновении вероятности поражения электричеством работают одной рукой, а вторая находится в кармане. Таким образом прерывается цепь «рука-рука» в случае непроизвольного прикосновения к щитку или другому заземлённому оборудованию. При воспламенении оборудования, подключённого к сети, ликвидируют огонь исключительно порошковыми или углекислотными тушителями.

Применение электрического тока

У электрического тока множество свойств, которые позволяют применять его почти во всех сферах человеческой деятельности. Способы использования электротока:

Электричество сегодня является наиболее экологически чистым видом энергии. В условиях современной экономики развитие электроэнергетики имеет планетарное значение. В будущем при возникновении сырьевого дефицита электричество займёт лидирующие позиции в качестве неисчерпаемого источника энергии.

Что такое электрический ток

Направленное движение электрически заряженных частиц под воздействием . Такими частицами могут являться: в проводниках – электроны , в электролитах – ионы (катионы и анионы), в полупроводниках – электроны и, так называемые, "дырки" ("электронно-дырочная проводимость"). Также существует "ток смещения ", протекание которого обусловлено процессом заряда емкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает.

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/t , где i - ток. А; q = 1,6· 10 9 - заряд электрона, Кл; t - время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/dt .

Первым условием длительного существования электрического тока рассматриваемого вида является наличие источника, или генератора, поддерживающего разность потенциалов между носителями зарядов. Второе условие - замкнутость пути. В частности, для существования постоянного тока необходимо наличие замкнутого пути, по которому заряды могут перемещаться внутри контура без изменения их значения.

Как известно, в соответствии с законом сохранения электрических зарядов они не могут создаваться или исчезать. Поэтому, если любой объем пространства, где протекают электрические токи, окружить замкнутой поверхностью, то ток, втекающий в этот объем, должен быть равен току, вытекающему из него.

Замкнутый путь, по которому течет электрический ток, называют цепью электрического тока, или электрической цепью. Электрическая цепь - делится на две части: внутреннюю, в которой электрически заряженные частицы движутся против направления электростатических сил, и внешнюю часть, в которой эти частицы движутся в направлении электростатических сил. Концы электродов, к которым подсоединяется внешняя цепь, называются зажимами.

Итак, электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками называют напряжением или падением напряжения на этом участке цепи .


Вместо термина «ток» («величина тока») часто применяется термин «сила тока». Однако последний нельзя назвать удачным, так как сила тока не есть какая-либо сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника.
Ток характеризуется , которая в системе СИ измеряется в амперах (А), и плотностью тока , которая в системе СИ измеряется в амперах на квадратный метр.

Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

1А = 1Кл / с.

В общем случае, обозначив ток буквой i, а заряд q, получим:

i = dq / dt.

Единица тока называется ампер (А) . Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон.

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов.
В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда - электронов, движущихся в проводящих средах от минуса к плюсу.


Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока: I / S

При этом предполагается, что ток равномерно распределен по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм2.

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости и токи смещения . Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках.

Полный электрический ток - скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время. Подробнее об этом читайте здесь:

Ток намагниченности - постоянный микроскопический (амперовый) ток, являющийся причиной существования собственного магнитного поля намагниченных веществ.

Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Величиной, характеризующей переменный ток, является частота (в системе СИ измеряется в герцах), в том случае, когда его сила изменяется периодически.

Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют на синусоидальные и несинусоидальные . Синусоидальным называют ток, изменяющийся по гармоническому закону:

i = Im sin wt,

где Im, - , А,

Скорость изменения переменного тока характеризуется его , определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота w - скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

w = 2пиf

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I неустановившиеся (мгновенные) значения - буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение - перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми.

Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью.

При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью , которые, однако, необходимо соответствующим образом модифицировать.

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно.

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то , пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля.

Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой - наоборот.

Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется для получения постоянного тока.

Электрический ток во всех его проявлениях представляет собой кинетическое явление, аналогичное течению жидкости в замкнутых гидравлических системах. По аналогии процесс движения тока называется "течением" (ток течет).

Материал, в котором течёт ток, называется . Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю.

Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по для участка цепи и закону Ома для полной цепи.

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Электрический ток является одним из основных процессов, протекающих в абсолютно любой электронной схеме (в электрической цепи). Изучение данного процесса позволит в дальнейшем гораздо проще понимать остальные процессы, присущие электрическим цепям.

Для более глубокого понимания сущности электрического тока, рекомендую прежде ознакомиться с природой возникновения . Ранее мы узнали, что при натирании о шерсть пластмассовой палочки за счет сил трения некоторое количество электронов покидают поверхностный слой стержня, который становится положительно заряженный. При натирании стеклянной палочки о шелк, она заряжается отрицательно, поскольку электроны покидают атомы из верхних слоев шелка и оседают на стекле.


Таким образом, мы имеем одну палочку с избытком электронов, поэтому говорят, что она отрицательно заряжена, а вторую палочку – с нехваткой электронов, поэтому в ней преобладает положительный заряд.

Поскольку все явле ния в природе стремится к равновесию, то соединив проводником обе разноименно заряженных стержня, свободные электроны мгновенно перейдут из стеклянного стержня к пластмассовому, из зоны их избытка в зону нехватки. В результате оба стержня станут нейтрально заряженными и лишены свободных электронов, которые могли бы легко перемещаться. Процесс перемещения электронов по проводнику между палочками и есть электрический ток .

Электрический ток могеж выполнять полезную работу, например, засветить светодиод, расп оложенные на его пути.

Полезную работу зарядов можно представить на примере автобуса. Если из города А в город Б проследовал автобус без пассажиров, то автобус не выполнил никакой полезной работы и напрасно израсходовал топливо. Автобус, перевезший пассажиров, — выполнил полезную работу. Аналогично работает и электрический ток, поэтому на его пути располагают нагрузку, на которой происходит выполнение полезной работы.

Соединенный проводами с натертыми палочками светодиод светится очень короткий промежуток времени, поскольку свободные отрицательные заряды мгновенно переместятся из области их избытка в область нехватки и наступит равновесие.

Генератор

Для того чтобы светодиод мог светиться продолжительное время необходимо поддерживать электрический ток путем пополнения зарядов на палочках, то есть постоянно их натирать о шерсть и шелк соответственно. Но такой способ трудно реализуем на практике и малоэффективен. Поэтому применяется гораздо практичней способ поддержания необходимого количества носителей энергии.

Устройство, которое постоянно создает или генерирует заряды разных знаков, называют генератором или обобщенно – источником питания. Простейшим генератором является батарейка, которую более правильно называть гальванический элемент. В отличие от палочек, в которых заряды образуются за счет сил трения, в гальваническом элементе разноименные заряды образуются в результате протекания химических реакций.

Электрический ток и условия его протекания

Теперь мы можем сделать первые важнейшие предварительные выводы и обозначить условия протекания электрического тока.

  1. Первое. Для образования электрического тока путь движения зарядов должен быть замкнут.
  2. Второе. Для поддержания электрического тока необходимо, чтобы вначале пути пополнялся запас зарядов, а в конце путь они отбирались, освобождая места для вновь пришедших зарядов.
  3. Третье. Чтобы заряды выполняли полезную работу, следует на их пути расположить, например нить лампы накаливания, светодиод или обмотку двигателя, которые в общем случае принято называть нагрузкой или потребителем.

В общем, простейшая электрическая цепь состоит из генератора, нагрузки и проводов, соединяющих генератор с нагрузкой.

Электродвижущая сила ЭДС

Главной задачей любого источника питания является образование и поддерживание на выводах, называемых электродами, постоянное значение разноименных зарядов. Чем большее число зарядов, тем сильнее они стремятся притянуться друг к другу и поэтому интенсивней перемещаются по электрической цепи. А сила, которая заставляет двигать электроны по цепи, называется электродвижущая сила или сокращенно ЭДС . Электродвижущая сила измеряется в вольтах [В] . ЭДС новой (не разряженной) батарейки чуть больше 1,5 В, а кроны – чуть больше 9 В.

Количественно оценить значение электрического тока наглядно на примере водопроводной трубы. Мысленно представим воду в виде набора маленьких капелек, имеющих одинаковые размеры. Теперь возьмем и разрежем в каком-либо месте трубу и установим счетчик капелек воды. Далее откроем кран и засечем время, например одну минуту. После отсчета времени снимем показания счетчика. Допустим, за одну минуту счетчик зафиксировал 1 миллион капель. Отсюда мы делаем вывод, что расход воды составляет миллион капель за минуту. Если мы увеличим напор воды – заставим насос качать ее быстрее, — то возрастет давление воды, при этом капельки начнут перемещаться интенсивней и соответственно возрастет расход воды.

Сила электрического тока

Аналогичным образом определяется сила электрического тока. Если мысленно разрезать провод, соединяющий генератор с нагрузкой и установить счетчик, то мы получим расход электронов за единицу времени, — это есть сила тока.

С ростом электродвижущей силы генератора электроны интенсивнее проходят по цепи, а сила тока возрастает.

Поскольку известен заряд электрона и их суммарное количество, прошедшее через поперечное сечение проводника за единицу времени, то можно количественно определить силу тока.

Заряд одного электрона имеет очень малую величину, а в электрическом токе их участвует огромное число. Поэтому за единицу электрического заряда приняли 628∙10 16 , то есть 6280000000000000000 зарядов электрона. Такая величина электрического заряда получила название кулон , сокращенно [Кл] .

Единица измерения силы тока называется ампер [А] . Сила тока равна одному амперу, когда через поперечное сечение проводника за одну секунду проходит суммарный электрический заряд, величиной в один кулон.

1 А = 1 Кл/1 сек

I = Q/t

Если за одну секунду по проводнику проходит в два раза больше электронов, то I равна 2 ампера.

В проводнике, выполненном из металла, например меди или алюминия, образуются множество свободных эле-нов. Они легко покидают атомы кристаллической решетки металла и свободно перемещаются в межатомном пространстве. Однако гуляют они не долго, поскольку мгновенно притягивается другим положительно заряженным атомом, который потерял аналогичный эле-н. Поэтому по умолчанию ток через проводник не протекает. Кроме того свободные эл-ны не имеют упорядоченного движения, а хаотически перемещаются в межатомном пространстве. Такое, не имеющее четкого направления, перемещение называют Броуновским движением. С ростом температуры интенсивность движения увеличивается.

Чтобы протекал I нужно на одном конце проводника создать недостачу эл-нов, а на втором их избыток, то есть подключить разноименные полюса источника питания. Тогда электрическое поле источника питания создаст такую электродвижущую силу, которая заставит эл-ны в проводнике перемещаться в строго одном направлении. Поэтому электрическим током называют упорядоченное движение зарядов под действием внешнего электрического поля