Классифицируются математические модели. Классификация математических моделей в зависимости от оператора модели. Теория моделирования является основной составляющей общей теории систем - системологии, где в качестве главного принципа постулируются осуществ

Основные понятия математического моделирования; виды математических моделей.

Цель лекции:

Изучить основные понятия математического моделирования и виды математических моделей.

2.1 Основные термины в математическом моделировании

Каждая математическая модель представляет собой упорядоченную комбинацию таких составляющих как компоненты, переменные, параметры, функциональные зависимости.

Под компонентами модели понимают составные части, которые при соответствующем объединении образуют систему. Компоненты могут быть либо неделимые структурные образования ("элементы" модели), либо составные части, являющиеся "подсистемами".

Обычно входы и выходы системы называют переменными , остальные величины – параметрами. Эти допущения приняты условно. Без каких-либо дополнительных соглашений ответить невозможно, где переменные, а где параметры. В качестве такого соглашения может быть принят, например, класс функций. Деление переменных на входные и выходные тоже не является абсолютным. Это справедливо по отношению к определенной системе. Надо исходить из конкретной характеристики всей изучаемой системы. Входы системы (экзогенные переменные) порождаются вне изучаемой системы и являются результатом действия внешних причин. Выходы (эндогенные переменные) возникают в системе в результате действия на нее экзогенных переменных.

Главные составляющие модели – функциональные зависимости, которые описывают поведение переменных и параметров системы или компонента. Обычно они устанавливают внутренние отношения между экзогенными (х) и эндогенными (у) переменными либо между переменными и зависимыми от них параметрами (р):

а) y = φ(p,x),

б) р = ψ(x,y).

Функции φ часто называют операторными (или просто операторами), а функции ψ – параметрическими. Закон функционирования системы, может быть задан аналитически, графически, таблично и т.д.

Последняя составляющая моделей – ограничения . В простейшем случае к ограничениям относят область изменения вектора аргументов модели xD x . Параметры модели тоже могут задаваться на некотором разрешенном множестве pD p .

Чаще всего считается, что моделируемая система не оказывает действия на окружающую среду. Вопрос о допустимости пренебрежения внешней средой должен быть обоснован.

2.2. Основные виды математических моделей

Создание некоторой универсальной модели, отвечающей различным аспектам ее применения, практически невозможно. Для получения информации, отражающей те или иные свойства управляемого объекта, необходима классификация моделей. В основе классификации лежат особенности оператора φ . Все многообразие объектов управления, исходя из временного и пространственного признаков, можно разделить на следующие классы: статические или динамические; линейные или нелинейные; непрерывные или дискретные во времени; стационарные или нестационарные; процессы, в ходе которых их параметры изменяются в пространстве, и процессы без пространственного изменения параметров. Так как математические моделии являются отражением соответствующих объектов, то для них характерны те же классы. Полное наименование модели может включать в себя совокупность перечисленных признаков. Эти признаки послужили основой названия соответствующих типов моделей.

В зависимости от характера изучаемых процессов в системе все модели могут быть разделены на следующие виды:

Детерминированные модели – отображают детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий.

Стохастические модели – отображают вероятностные процессы и события; в этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

Стационарные и нестационарные модели. Модель называется стационарной, если вид оператора φ и его параметры p не изменяются во времени, то есть, когда справедливо

φ= φ, т.е. y= φ(p,x).

Если же параметры модели изменяются во времени, то модель является

параметрически нестационарной

y= φ.

Самый общий вид нестационарности – когда от времени зависит и вид функции. Тогда в запись функции добавляется еще один аргумент

y= φ(p,t,x).

Статические и динамические модели. В основе такого разделения типов моделей лежат особенности движения исследуемого объекта как материальной системы.

Говоря о моделях с позиций задач управления, надо отметить, что под пространством здесь понимается не геометрическое пространство, а пространство состояний – координат состояний выходных переменных у . Элементами вектора y являются обычно контролируемые технологические параметры (расход, давление, температура, влажность, вязкость и т.д.). Состав элементов вектораy для самого объекта может быть шире, чем для модели этого объекта, так как при моделировании требуется изучение только части свойств реальной системы. Движение объекта управления в пространстве состояний и во времени оценивается с помощью векторного процесса y(t).

Модель системы называется статической , если состояние системы не изменяется, то есть система находится в равновесии, но движение связано со статичным состоянием объекта, находящегося в равновесии. Математическое описание в статических моделях не включает время как переменную и состоит из алгебраических уравнений либо дифференциальных уравнений в случае объектов с распределенными параметрами. Статические модели обычно являются нелинейными. Они точно отражают состояние равновесия, вызванное переходом объекта от одного режима к другому.

Динамическая модель отражает изменение состояния объекта во времени. Математическое описание таких моделей обязательно включает производную во времени. Динамические модели используют дифференциальные уравнения. Точные решения этих уравненийизвестны только для некоторого класса дифференциальных уравнений. Чаще приходится прибегать к использованию численных методов, являющихся приближенными.

Для целей управления динамическую модель представляют в виде передаточной функции, связывающей входные и выходные переменные.

Линейные и нелинейные модели. Математически функция L (x ) – линейна, если

L(λ 1 x 1 +λ 2 x 2)=λ 1 L(x 1)+λ 2 L(x 2).

Аналогично и для функций многих переменных. Линейной функции присуще использование только операций алгебраического сложения и умножения переменной на постоянный коэффициент. Если в выражении для оператора моделиесть нелинейные операции, то модель является нелинейной , в противном случае модель – линейна .

Модели с сосредоточенными и распределенными параметрами. Следует отметить, что с учетом введенной терминологии было бы корректнее в названии модели вместо слова «параметры» употреблять понятие «координата состояния». Однако это сложившееся название, которое часто встречается во всех работах по моделированию технологических процессов.

Если основные переменные процесса изменяются как во времени, так и в пространстве (или только в пространстве), то модели, описывающие такие процессы, называются моделями с распределенными параметрами. В этом случае вводится геометрическое пространство z =(z 1 , z 2 , z 3 ) и уравнения имеют вид:

y(z)=φ, p(z)=ψ.

Их математическое описание включает обычно дифференциальные уравнения в частных производных, либо обыкновенные дифференциальные уравнения в случае стационарных процессов с одной пространственной координатой.

Если можно пренебречь пространственной неравномерность значений координат состояний объекта, т.е. градиент , то соответствующая модель – модель с сосредоточенными параметрами. Для них масса и энергия как бы сосредоточены в одной точке.

Трехмерность пространства не всегда обязательна. Например, модель змеевика с нагреваемым рабочим телом и с тонкостенной оболочкой обычно исходит из одномерности объекта – учитывается только длина змеевика. В то же время процесс передачи тепла в ограниченный объем рабочего тела через толстую стенку может быть описан одномерной моделью, учитывающей только толщину оболочки и т.п. Для конкретных объектов форма соответствующих уравнений требует обоснований.

Модели непрерывные и дискретные во времени. Непрерывные модели отражают непрерывные процессы в системах. Модели, описывающие состояние объектов относительно времени как непрерывного аргумента – непрерывные (по времени):

y(t)=φ, p(t)=ψ.

Дискретные модели служат для описания процессов, которые предполагаются дискретными. Дискретная модель не может дать прогноз поведения объекта на интервале между дискретными отсчетами времени. Если введем квантование по времени с шагом ∆t, то рассматривается дискретная шкала , где i=0,1,2…- приобретает смысл относительного времени. И дискретная модель:

y(i)=φ; p(i)=ψ.

При правильном выборе шага ∆t можно ожидать от дискретной модели результата с наперед заданной точностью. При изменении ∆t должны быть пересчитаны и коэффициенты разностного уравнения.

Дискретно-непрерывные модели используются для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

Требования, предъявляемые к математическим моделям: точность – свойство, отражающее степень совпадения предсказанных с помощью модели значений параметров объекта с их истинными значениями; экономичность затрат машинного времени; универсальность – применимость к анализу группы однотипных объектов.

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе - настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель - это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где — расстояние в метрах, — время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

Такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому, где — мощность излучения звезды, — постоянная, — площадь поверхности звезды, а — температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где — высота в метрах, — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где - это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где — время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула - это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ - задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию - то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Выше отмечалось, что любая математическая модель может рассматриваться как некоторый оператор А, который является алгоритмом или определяется совокупностью уравнений - алгебраических, обыкновенных дифференциальных уравнений (ОДУ), систем ОДУ (СОДУ), дифференциальных уравнений в частных производных (ДУЧП), интегродифференциальных уравнений (ИДУ) и др. (рис. 1.6).

Если оператор обеспечивает линейную зависимость выходных параметров от значений входных параметров X, то математическая модель называется линейной (рис. 1.7). Линейные модели более просты для анализа. Например, из свойства линейности следует свойство суперпозиции решений, т.е. если известны решения при и при , то решение для выходных параметров при есть . Предельные значения для линейных моделей достигаются, как правило, на границах областей допустимых значений входных параметров.

Линейное поведение свойственно относительно простым объектам. Системам, как правило, присуще нелинейное многовариантное поведение (рис. 1.8). Соответственно модели подразделяются на нелинейные.

В зависимости от вида оператора математические модели можно разделить на простые и сложные.

В случае, когда оператор модели является алгебраическим выражением, отражающим функциональную зависимость выходных параметров fot входных X, модель будем называть простой.

В качестве примеров простых моделей можно привести многие законы физики (закон всемирного тяготения, закон Ома, закон Гука, закон трения Амонтона-Кулона), а также все эмпирические, т.е. полученные из опыта, алгебраические зависимости между входными и выходными параметрами.

Модель, включающая системы дифференциальных и интегральных соотношений, уже не может быть отнесена к простым, так как для своего исследования требует применения довольно сложных математических методов. Однако в двух случаях она может быть сведена к простым:

если полученная для подобной модели система математических соотношений может быть разрешена аналитически;

если результаты вычислительных экспериментов со сложной моделью аппроксимированы некоторой алгебраической зависимостью. В настоящее время известно достаточно большое число подходов и методов аппроксимации (например, метод наименьших квадратов или метод планирования экспериментов).

На практике довольно часто возникают ситуации, когда удовлетворительное описание свойств и поведения объекта моделирования (как правило, сложной системы) не удается выполнить с помощью математических соотношений. Однако в большинстве случаев удается построить некоторый имитатор поведения и свойств такого объекта с помощью алгоритма, который можно считать оператором модели.



Например, если в результате наблюдения за объектом получена таблица соответствия между входными Х и выходными значениями параметров, то определить оператор А, позволяющий получить «выход» по заданному «входу», зачастую бывает проще с помощью алгоритма.

Классификация математических моделей в зависимости от параметров модели (рис. 1.9)


В общем случае параметры, описывающие состояние и поведение объекта моделирования, разбиваются на ряд непересекающихся подмножеств

совокупность входных (управляемых) воздействий на объект ();

совокупность воздействий внешней среды (неуправляемых) ();

совокупность внутренних (собственных) параметров объекта ();

совокупность выходных характеристик ().

Например, при моделировании движения материальной точки в поле сил тяжести входными параметрами могут быть начальное положение и начальная скорость точки в момент времени . Сила сопротивления и сила тяжести характеризуют воздействие внешней среды. Масса точки является собственным параметром. Координата и скорость точки (при ) относятся к выходным параметрам. Отнесение параметров к входным или выходным зависит от постановки конкретной задачи. Поэтому всегда существуют прямые и обратные задачи.

Входные параметры , параметры, описывающие воздействие внешней среды , и внутренние (собственные) характеристики объекта относят обычно к независимым (экзогенным) величинам. Выходные параметры - зависимые (эндогенные) величины. В общем случае оператор модели преобразует экзогенные параметры в эндогенные .

По своей природе характеристики объекта могут быть как качественными , так и количественными . Для количественной характеристики вводятся числа, выражающие отношения между данным параметром и эталоном (например «метром»). Кроме того, количественные значения параметра могут выражаться дискретными или непрерывными величинами . Качественные характеристики находятся, например методом экспертных оценок. В зависимости от вида используемых множеств параметров модели могут подразделяться на качественные и количественные, дискретные и непрерывные, a также смешанные.

При построении модели возможны следующие варианты описания неопределенности параметров:

детерминированное - значения всех параметров модели определяются детерминированными величинами (т.е. каждому параметру соответствует конкретное целое, вещественное или комплексное число либо соответствующая функция). Данный способ соответствует полной определенности параметров;

стохастическое - значения всех или отдельных параметров модели определяются случайными величинами, заданными плотностями вероятности. Например, случаи нормального (гауссова) и показательного распределения случайных величин;

случайное - значения всех или отдельных параметров модели устанавливаются случайными величинами, заданными оценками плотностей вероятности, полученными в результате обработки ограниченной экспериментальной выборки данных параметров;

интервальное - значения всех или отдельных параметров модели описываются интервальными величинами, заданными интервалом, образованным минимальным и максимально возможными значениями параметра;

нечеткое - значения всех или отдельных параметров модели описываются функциями принадлежности соответствующему нечеткому множеству. Такая форма используется, когда информация о параметрах модели задается экспертом на естественном языке, а, следовательно, в «нечетких» терминах типа «много больше пяти», «около нуля».

Разделение моделей на одномерные, двухмерные и трехмерные применимо для таких моделей, в число параметров которых входят координаты пространства, и связано с особенностями реализации этих моделей, равно как и с резким увеличением их сложности при возрастании размерности.

Как и координаты, время относится к независимым переменным, от которых могут зависеть остальные параметры модели. Обычно чем меньше масштаб объекта, тем существеннее зависимость его параметров от времени.

Любой объект стремится перейти в некоторое равновесное состояние, как с окружающей его средой, так и между отдельными элементами самого объекта. Нарушение этого равновесия приводит к изменениям различных параметров объекта и его переходу в новое равновесное состояние.

При построении модели важным является сравнение времени существенных изменений внешних воздействий и характерных временных переходов объекта в новое равновесное состояние с окружающей средой, а также времени релаксации, определяющего установление равновесия между отдельными элементами внутри объекта. Если скорости изменения внешних воздействий на объект моделирования существенно меньше скорости релаксации, то явной зависимостью от времени в модели можно пренебречь. В этом случае говорят о квазистатическом процессе.

Совокупность значений параметров модели в некоторый момент времени или на данной стадии называется состоянием объекта.

Если скорости изменения внешних воздействий и параметров состояния изучаемого объекта достаточно велики (по сравнению со скоростями релаксации), то учет времени необходим. В этом случае объект исследования рассматривают в рамках динамического процесса .

В случае если внешние воздействия остаются постоянными или их колебания слабо отражаются на состоянии объекта в течении достаточно длительного промежутка времени то тогда в каждой фиксированной точке исследуемого пространства значения параметров модели не зависят от времени. Например, поле скоростей частиц жидкости в длинной трубе при ламинарном режиме. Подобные процессы называют стационарными . Как правило, стационарные модели применяются для описания различных потоков (жидкости, газа, тепла) в случае постоянства условий на входе и выходе потока. Для таких процессов время может быть исключено из числа независимых переменных.

Если в качестве одной из существенных независимых переменных модели необходимо использовать время (или его аналог), то модель называется нестационарной . Примером нестационарной модели является модель движения жидкости в трубе, но вытекающей из некоторого сосуда.


Классификация математических моделей в зависимости от целей моделирования (рис. 1.11)

Целью дескриптивных моделей является установление законов изменения параметров модели. Полученная модель описывает зависимость выходных параметров от входных. Поэтому дескриптивные модели являются реализацией описательных и объяснительных содержательных моделей на формальном уровне моделирования.

Оптимизационные модели предназначены для определения оптимальных (наилучших) с точки зрения некоторого критерия параметров моделируемого объекта или же для поиска оптимального (наилучшего) режима управления некоторым процессом. Часть параметров модели относят к параметрам управления, изменяя которые можно получать различные варианты наборов значений выходных параметров. Как правило, данные модели строятся с использованием одной или нескольких дескриптивных моделей и включают некоторый критерий, позволяющий сравнивать различные варианты наборов значений выходных параметров между собой с целью выбора наилучшего. На область значений входных параметров могут быть наложены ограничения в виде равенств и неравенств, связанные с особенностями рассматриваемого объекта или процесса. Целью оптимизационных моделей является поиск таких допустимых параметров управления, при которых критерий выбора достигает своего «наилучшего значения».

Управленческие модели применяются для принятия эффективных управленческих решений в различных областях целенаправленной деятельности человека. В общем случае принятие решений является процессом, по своей сложности сравнимым с процессом мышления в целом. Однако на практике под принятием решений обычно понимается выбор некоторых альтернатив из заданного их множества, а общий процесс принятия решений представляется как последовательность таких выборов альтернатив.

Сложность задачи заключается в наличии неопределенности как по исходной информации и характеру воздействия внешних условий, так и по целям. Поэтому в отличие от оптимизационных моделей, где критерий выбора считается определенным и искомое решение устанавливается из условий его экстремальности (максимума или минимума), в управленческих моделях необходимо введение специфических критериев оптимальности, которые позволяют сравнивать альтернативы при различных неопределенностях задачи.

Поскольку оптимальность принятого решения даже в одной и той же ситуации может пониматься по-разному, вид критерия оптимальности в управленческих моделях заранее не фиксируется. Именно в этом состоит основная особенность данных моделей.

Классификация математических моделей в зависимости от методов реализации (рис. 1.12)


Метод реализации модели относят к аналитическим , если он позволяет получить выходные параметры в виде аналитических выражений, т.е. выражений, в которых используется не более чем счетная совокупность арифметических операций и переходов к пределу. Примеры аналитических выражений:

,

Частным случаем аналитических выражений являются алгебраические выражения, в которых используется конечное или счетное число арифметических операций, операций возведения в целочисленную степень и извлечения корня. Пример алгебраических выражений: .

Очень часто аналитическое решение для модели представляют в элементарных или специальных функциях. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора). Так, показательная функция может быть представлена следующим рядом:

Учитывая различное число членов ряда, можно вычислять значение функции с различной степенью точности. Таким образом, значение функции при каждом значении аргумента в этом случае определяется приближенно. Модели, использующие подобный прием, называются приближенными .

Аналитические методы реализации модели являются более ценными, однако их не всегда можно получить.

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т.е. переходом от функций непрерывного аргумента к функциям дискретного аргумента. После дискретизации исходной задачи выполняется построение вычислительного алгоритма. Найденное решение дискретной задачи принимается за приближенное решение исходной математической задачи. Основным требованием к вычислительному алгоритму является необходимость получения решения исходной задачи с заданной точностью за конечное число шагов.

При имитационном подходе на отдельные элементы разбивается сам объект исследования. В этом случае система математических соотношений для объекта-системы в целом не записывается, а заменяется некоторым алгоритмом, моделирующим ее поведение и учитывающим взаимодействие друг с другом моделей отдельных элементов системы. Модели отдельных элементов могут быть как аналитическими, так и алгебраическими.

ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Отличительной особенностью математических моделей, создаваемых в настоящее время, является их комплексность, связанная со сложностью моделируемых объектов. Что приводит к усложнению модели и необходимости совместного использования нескольких теорий (нередко - из разных областей знания), применения современных вычислительных методов и вычислительной техники для получения и анализа результатов моделирования. Сегодня повсеместное использование моделей в практике инженерно-технической деятельности вызвало необходимость в алгоритме построения мат. моделей.

Процесс построения любой математической модели можно представить последовательностью этапов, представленных на рис. 2.1.

2.1. ОБСЛЕДОВАНИЕ ОБЪЕКТА МОДЕЛИРОВАНИЯ

Математические модели, особенно использующие численные методы и вычислительную технику, требуют для своего построения значительных интеллектуальных, финансовых и временных затрат. Поэтому решение о разработке новой модели принимается лишь в случае отсутствия иных, более простых путей решения возникших проблем (например, модификации одной из существующих моделей). Если это решение все-таки принято, то порядок действий следующий.

Основной целью этапа обследования объекта моделирования является подготовка содержательной постановки задачи моделирования.

Перечень сформулированных в содержательной (словесной) форме основных интересующих вопросов об объекте моделирования составляет содержательную постановку задачи моделирования.

Этап обследования включает следующие работы:

тщательное обследование собственно объекта моделирования с целью выявления основных факторов, механизмов, влияющих на его поведение, определения соответствующих параметров, позволяющих описывать моделируемый объект;

сбор и проверка имеющихся экспериментальных данных об объектах-аналогах, проведение при необходимости дополнительных экспериментов;

аналитический обзор литературных источников, анализ и сравнение между собой построенных ранее моделей данного объекта (или подобных рассматриваемому объекту);

анализ и обобщение всего накопленного материала, разработка общего плана создания математической модели.

Весь собранный в результате обследования материал о накопленных к данному моменту знаниях об объекте, содержательная постановка задачи моделирования, дополнительные требования к реализации модели и представлению результатов оформляются в виде технического задания на проектирование и разработку модели .

Разработать математическую модель, позволяющую описать полет баскетбольного мяча, брошенного игроком в баскетбольную корзину.

Модель должна позволять:

вычислять положение мяча в любой момент времени;

определять точность попадания мяча в корзину после броска при различных начальных параметрах.

Исходные данные:

масса и радиус мяча;

начальные координаты, начальная скорость и угол броска мяча;

координаты центра и радиус корзины.

2.2. КОНЦЕПТУАЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ МОДЕЛИРОВАНИЯ

Концептуальная постановка задачи моделирования - это сформулированный в терминах конкретных дисциплин (физики, химии, биологии и т.д.) перечень основных интересующих вопросов, а также совокупность гипотез относительно свойств и поведения объекта моделирования.

Концептуальная модель строится как некоторая идеализированная модель объекта, записанная в терминах конкретных дисциплин. Для этого формулируется совокупность гипотез о поведении объекта, его взаимодействии с окружающей средой, изменении внутренних параметров. Как правило, эти гипотезы правдоподобны, так как для их обоснования могут быть приведены некоторые теоретические доводы и использованы экспериментальные данные, основанные на собранной ранее информации об объекте. Согласно принятым гипотезам определяется множество параметров, описывающих состояние объекта, а также перечень законов, управляющих изменением и взаимосвязью этих параметров между собой.

Пример. Концептуальная постановка задачи о баскетболисте.

Движение баскетбольного мяча может быть описано в соответствии с законами классической механики Ньютона (рис. 2.2).

Примем следующие гипотезы:

объектом моделирования является баскетбольный мяч радиуса ;

движение происходит в поле сил тяжести с постоянным ускорением свободного падения и описывается уравнениями классической механики Ньютона;

движение мяча происходит в одной плоскости, перпендикулярной поверхности Земли и проходящей через точку броска и центр корзины;

пренебрегаем сопротивлением воздуха и возмущениями, вызванными собственным вращением мяча вокруг центра масс.

В соответствии с изложенными гипотезами в качестве параметров движения мяча можно использовать координаты и скорость (ее проекции и ) центра масс мяча. Тогда для определения положения мяча в любой момент времени достаточно найти закон движения центра масс мяча, т.е. зависимость координат и проекций вектора скорости и центра мяча от времени. В качестве оценки точности броска можно рассматривать величину расстояния по горизонтали (вдоль оси )от центра корзины до центра мяча в момент, когда последний пересекает горизонтальную плоскость, проходящую через плоскость кольца корзины.

С учетом вышеизложенного можно сформулировать концептуальную постановку задачи о баскетболисте в следующем виде: определить закон движения материальной точки массой под действием силы тяжести, если известны начальные координаты точки , ее начальная скорость и угол бросания . Центр корзины имеет координаты . Вычислить точность броска , где определяется из условий: , , .

Рассмотрим особенности приведенной в примере концептуальной постановки задачи о баскетболисте.

Первая из перечисленных гипотез особенно важна, так как она выделяет объект моделирования. В данном случае объект можно считать простым. Однако в качестве объекта моделирования можно рассматривать систему «игрок - мяч - кольцо». Требуемая для описания подобной системы модель будет уже намного сложнее, так как игрок в свою очередь представляет сложную биомеханическую систему и его моделирование является сложной задачей. В данной ситуации выбор в качестве объекта моделирования только мяча обоснован, поскольку именно его движение требуется исследовать, а влияние игрока можно учесть достаточно просто через начальные параметры броска.

Гипотеза о том, что мяч можно считать материальной точкой, широко применяется для исследования движений тел в механике. В рассматриваемом случае она оправдана в силу симметрии формы мяча и малости его радиуса по сравнению с характерными расстояниями перемещения мяча. Предполагается, что последний является шаром с одинаковой толщиной стенки.

Гипотезу о применимости в данном случае законов классической механики можно обосновать огромным экспериментальным материалом, связанным с изучением движения тел вблизи поверхности Земли со скоростями много меньше скорости света. Учитывая, что высота полета мяча лежит в пределах 5-10 м, а дальность - 5-20 м, предположение о постоянстве ускорения свободного падения также представляется обоснованным. Если бы моделировалось движение баллистической ракеты при дальности и высоте полета более 100 км, то пришлось бы учитывать изменение ускорения свободного падения в зависимости от высоты и широты места.

Гипотеза о движении мяча в плоскости, перпендикулярной поверхности Земли, ограничивает класс рассматриваемых траекторий и значительно упрощает модель. Траектория мяча может не лежать в одной плоскости, если при броске он сильно подкручивается вокруг вертикальной оси. В этом случае скорости точек поверхности мяча относительно воздуха на различных сторонах мяча будут различны. Для точек, движущихся навстречу потоку, относительная скорость выше, а для точек противоположной стороны, движущихся по потоку, - ниже скорости центра масс мяча. В соответствии с законом Бернулли, давление газа на поверхность больше там, где его относительная скорость меньше. Поэтому для ситуации, изображенной на рис. 2.3, на мяч будет действовать дополнительная сила, направленная (для данной схемы) сверху вниз. Этот эффект будет проявляться тем больше, чем больше скорость центра масс мяча и скорость его вращения. Для баскетбола характерны относительно низкие скорости полета мяча (до 10 м/с). При этом довольно редко используется подкрутка мяча рукой. Поэтому гипотеза о движении мяча в одной плоскости кажется оправданной. Ее использование позволяет отказаться от построения значительно более сложной трехмерной модели движения мяча.

Гипотеза об отсутствии влияния сопротивления воздуха наименее обоснована. При движении тела в газе или жидкости сила сопротивления увеличивается с ростом скорости движения. Учитывая невысокие скорости движения мяча, его правильную обтекаемую форму и малые дальности бросков, указанная гипотеза может быть принята в качестве первого приближения.

Следует отметить, что концептуальная постановка задачи моделирования в отличие от содержательной постановки использует терминологию конкретной дисциплины (в рассматриваемом случае - механики). При этом моделируемый реальный объект (мяч) заменяется его механической моделью (материальной точкой). Фактически в приведенном примере концептуальная постановка свелась к постановке классической задачи механики о движении материальной точки в поле сил тяжести. Концептуальная постановка более абстрактна по отношению к содержательной, так как материальной точке можно сопоставить произвольный материальный объект, брошенный под углом к горизонту: футбольный мяч, ядро, камень или артиллерийский снаряд.

2.3. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ МОДЕЛИРОВАНИЯ

Законченная концептуальная постановка позволяет сформулировать математическую постановку задачи моделирования, включающую совокупность различных математических соотношений, описывающих поведение и свойства объекта моделирования.

Математическая постановка задачи моделирования - это совокупность математических соотношений, описывающих поведение и свойства объекта моделирования.

Совокупность математических соотношений определяет вид оператора модели. Наиболее простым будет оператор модели в случае, если он представлен системой алгебраических уравнений. Подобные модели можно назвать моделями аппроксимационного типа , так как для их получения часто используют различные методы аппроксимации имеющихся экспериментальных данных о поведении выходных параметров объекта моделирования в зависимости от входных параметров и воздействий внешней среды, а также от значений внутренних параметров объекта.

Однако область применения моделей подобного типа ограничена. Для создания математических моделей сложных систем и процессов, применимых для широкого класса реальных задач требуется, как уже отмечалось выше, привлечение большого объема знаний, накопленных в рассматриваемой дисциплине (а в некоторых случаях и в смежных областях). В большинстве дисциплин (особенно естественно-научных) эти знания сконцентрированы в аксиомах, законах, теоремах, имеющих четкую математическую формулировку.

Следует отметить, что во многих областях знаний (механике, физике, биологии и т.д.) принято выделять законы, справедливые для всех объектов исследования данной области знаний, и соотношения, описывающие поведение отдельных объектов или их совокупностей. К числу первых в физике и механике относятся, например, уравнения баланса массы, количества движения, энергии и т.д., справедливые при определенных условиях для любых материальных тел, независимо от их конкретного строения, структуры, состояния, химического состава. Уравнения этого класса подтверждены огромным количеством экспериментов, хорошо изучены и в силу этого применяются в соответствующих математических моделях как данность. Соотношения второго класса в физике и механике называют определяющими, или физическими уравнениями, или уравнениями состояния. Они устанавливают особенности поведения материальных объектов или их совокупностей (например, жидкостей, газов, упругих или пластических сред и т.д.) при воздействиях различных внешних факторов.

Соотношения второго класса гораздо менее изучены, а в ряде случаев их приходится устанавливать самому исследователю (особенно при анализе объектов, состоящих из новых материалов). Необходимо отметить, что определяющие соотношения - это основной элемент любой математической модели физико-механических процессов. Именно ошибки в выборе или установлении определяющих соотношений приводят к количественно (а иногда и качественно) неверным результатам моделирования.

Совокупность математических соотношений указанных двух классов определяет оператор модели. В большинстве случаев оператор модели включает в себя систему обыкновенных дифференциальных уравнений (ОДУ), дифференциальных уравнений в частных производных (ДУЧП) и/или интегродифференциальных уравнений (ИДУ). Для обеспечения корректности постановки задачи к системе ОДУ или ДУЧП добавляются начальные или граничные условия, которые, в свою очередь, могут быть алгебраическими или дифференциальными соотношениями различного порядка.

Можно выделить несколько наиболее распространенных типов задач для систем ОДУ или ДУЧП:

задача Коши, или задача с начальными условиями, в которой по заданным в начальный момент времени переменным (начальным условиям) определяются значения этих искомых переменных для любого момента времени;

начально-граничная, или краевая, задача, когда условия на искомую функцию выходного параметра задаются в начальный момент времени для всей пространственной области и на границе последней в каждый момент времени (на исследуемом интервале);

задачи на собственные значения, в формулировку которых входят неопределенные параметры, определяемые из условия качественного изменения поведения системы (например, потеря устойчивости состояния равновесия или стационарного движения, появление периодического режима, резонанс и т.д.).

Для контроля правильности полученной системы математических соотношений требуется проведение ряда обязательных проверок:

Контроль размерностей, включающий правило, согласно которому приравниваться и складываться могут только величины одинаковой размерности. При переходе к вычислениям данная проверка сочетается с контролем использования одной и той же системы единиц для значений всех параметров.

Контроль порядков, состоящий из грубой оценки сравнительных порядков складываемых величин и исключением малозначимых параметров. Например, если для выражения в результате оценки установлено, что в рассматриваемой области значений параметров модели и третьим слагаемым в исходном выражении можно пренебречь.

Контроль характера зависимостей заключается в проверке того, что направление и скорость изменения выходных параметров модели, вытекающие из выписанных математических соотношений, такие, как это следует непосредственно из «физического» смысла изучаемой модели.

Контроль экстремальных ситуаций - проверка того, какой вид принимают математические соотношения, а также результаты моделирования, если параметры модели или их комбинации приближаются к предельно допустимым для них значениям, чаще всего к нулю или бесконечности. В подобных экстремальных ситуациях модель часто упрощается, математические соотношения приобретают более наглядный смысл, упрощается их проверка. Например, в задачах механики деформируемого твердого тела деформация материала в исследуемой области в изотермических условиях возможна лишь при приложении нагрузок, отсутствие же нагрузок должно приводить к отсутствию деформаций.

Контроль граничных условий, включающий проверку того, что граничные условия действительно наложены, что они использованы в процессе построения искомого решения и что значения выходных параметров модели на самом деле удовлетворяют данным условиям.

Контроль физического смысла - проверка физического или иного, в зависимости от характера задачи, смысла исходных и промежуточных соотношений, появляющихся по мере конструирования модели.

Контроль математической замкнутости, состоящий в проверке того, что выписанная система математических соотношений дает возможность, притом однозначно, решить поставленную математическую задачу. Например, если задача свелась к отысканию неизвестных из некоторой системы алгебраических или трансцендентных уравнений, то контроль замкнутости состоит в проверке того факта, что число независимых уравнений должно быть . Если их меньше и, то надо установить недостающие уравнения, а если их больше я, то либо уравнения зависимы, либо при их составлении допущена ошибка. Однако если уравнения получаются из эксперимента или в результате наблюдений, то возможна постановка задачи, при которой число уравнений превышает , но сами уравнения удовлетворяются лишь приближенно, а решение ищется, например, по методу наименьших квадратов. Неравенств среди условий также может быть любое число, как это бывает, например, в задачах линейного программирования.

Свойство математической замкнутости системы математических соотношений тесно связано понятием корректно поставленной математической задачи, т.е. задачи, для которой решение существует, оно единственно и непрерывно зависит от исходных данных. В данном случае решение считается непрерывным, если малому изменению исходных данных соответствует достаточно малое изменение решения.

Понятие корректности задачи имеет большое значение в прикладной математике. Например, численные методы решения оправдано применять лишь к корректно поставленным задачам. При этом далеко не все задачи, возникающие на практике, можно считать корректными (например, так называемые обратные задачи). Доказательство корректности конкретной математической задачи - достаточно сложная проблема, она решена только для некоторого класса математически поставленных задач. Проверка математической замкнутости является менее сложной по сравнению с проверкой корректности математической постановки. В настоящее время активно исследуются свойства некорректных задач, разрабатываются методы их решения. Аналогично понятию «корректно поставленная задача» можно ввести понятие «корректная математическая модель».

Математическая модель является корректной, если для нее осуществлен и получен положительный результат всех контрольных проверок: размерности, порядков, характера зависимостей, экстремальных ситуаций, граничных условий, физического смысла и математической замкнутости.

Пример. Математическая постановка задачи о баскетболисте.

Математическую постановку задачи о баскетболисте можно представить как в векторной, так и в координатной форме (рис. 2.4).

1. Векторная форма.

Найти зависимости векторных параметров от времени - и - из решения системы обыкновенных дифференциальных уравнений

,

при начальных условиях

,

Вычислить параметр по формуле

где определить из следующих условий:

, , ,

Проецируя векторные соотношения - на оси координат, получим математическую постановку задачи о баскетболисте в координатной форме.

2. Координатная форма.

Найти зависимости , и , из решения системы диф­ференциальных уравнений:

, , , ,

при следующих начальных условиях:

, , ,

Вычислить параметр по формуле

где определить из условий

, ,

Как можно видеть, с математической точки зрения задача о баскетболисте свелась к задаче Коши для системы ОДУ первого порядка с заданными начальными условиями. Полученная система уравнений является замкнутой, так как число независимых уравнений (четыре дифференциальных и два алгебраических) равно числу искомых параметров задачи ( , , , , , ). Выполним контроль размерностей задачи:

уравнение динамики

связь скорости и перемещения

Существование и единственность решения задачи Коши доказана математиками. Поэтому данную математическую модель можно считать корректной.

Математическая постановка задачи еще более абстрактна, чем концептуальная, так как сводит исходную задачу к чисто математической (например, к задаче Коши), методы решения которой достаточно хорошо разработаны. Умение свести исходную проблему к известному классу математических задач и обосновать правомочность такого сведения требует высокой квалификации математика-прикладника и особенно высоко ценится в исследовательских коллективах.

2.4. ВЫБОР И ОБОСНОВАНИЕ ВЫБОРА МЕТОДА РЕШЕНИЯ ЗАДАЧИ

При использовании разработанных математических моделей, как правило, требуется найти зависимость некоторых неизвестных заранее параметров объекта моделирования (например, координат и скорости центра масс тела, точности броска), удовлетворяющих определенной системе уравнений. Таким образом, поиск решения задачи сводится к отысканию некоторых зависимостей искомых величин от исходных параметров модели. Как уже было отмечено ранее, все методы решения задач, составляющих «ядро» математических моделей, можно подразделить на аналитические и алгоритмические.

Следует отметить, что при использовании аналитических решений для получения результатов «в числах» также часто требуется разработка соответствующих алгоритмов, реализуемых на ЭВМ. Однако исходное решение при этом представляет собой аналитическое выражение (или их совокупность). Решения же, основанные на алгоритмических методах, принципиально не сводимы к точным аналитическим решениям рассматриваемой задачи.

Выбор того или иного метода исследования в значительной степени зависит от квалификации и опыта членов рабочей группы. Как уже было отмечено, аналитические методы более удобны для последующего анализа результатов, но применимы лишь для относительно простых моделей. В случае, если математическая задача (хотя бы и в упрощенной постановке) допускает аналитическое решение, последнее, без сомнения, предпочтительнее численного.

Алгоритмические методы сводятся к некоторому алгоритму, реализующему вычислительный эксперимент с использованием ЭВМ. Точность моделирования в подобном эксперименте существенно зависит от выбранного метода и его параметров (например, шага интегрирования). Алгоритмические методы, как правило, более трудоемки в реализации, требуют хорошего знания методов вычислительной математики, обширной библиотеки специального программного обеспечения и вычислительной техники. Современные модели на базе алгоритмических методов разрабатываются в исследовательских организациях, которые зарекомендовали себя как авторитетные научные школы в соответствующей области знания.

Причем численные методы применимы лишь для корректных математических задач, что существенно ограничивает использование их в математическом моделировании.

Общим для всех численных методов является сведение математической задачи к конечномерной. Это чаще всего достигается дискретизацией исходной задачи, т.е. переходом от функции непрерывного аргумента к функциям дискретного аргумента. Например, траектория центра тяжести баскетбольного мяча определяется не как непрерывная функция времени, а как табличная (дискретная) функция координат от времени, т.е. определяющая значения координат лишь для конечного числа моментов времени. Полученное решение дискретной задачи принимается за приближенное решение исходной математической задачи.

Применение любого численного метода неминуемо приводит к погрешности результатов решения задачи. Выделяют три основных составляющих возникающей погрешности при численном решении исходной задачи:

неустранимая погрешность, связанная с неточным заданием исходных данных (начальные и граничные условия, коэффициенты и правые части уравнений);

погрешность метода, связанная с переходом к дискретному аналогу исходной задачи (например, заменяя производную разностным аналогом
, получаем погрешность дискретизации, имеющую при порядок );

ошибка округления, связанная с конечной разрядностью чисел, представляемых в ЭВМ.

Естественным требованием для конкретного вычислительного алгоритма является согласованность в порядках величин перечисленных трех видов погрешностей.

Численный, или приближенный, метод реализуется всегда в виде вычислительного алгоритма. Поэтому все требования, предъявляемые к алгоритму, применимы и к вычислительному алгоритму. Прежде всего, алгоритм должен быть реализуем - обеспечивать решение задачи за допустимое машинное время. Важной характеристикой алгоритма является его точность, т.е. возможность получения решения исходной задачи с заданной точностью за конечное число действий. Очевидно, чем меньше , тем больше затрачиваемое машинное время. Для очень малых значений время вычислений может быть недопустимо большим. Поэтому на практике добиваются некоторого компромисса между точностью и затрачиваемым машинным временем. Очевидно, что для каждой задачи, алгоритма и типа ЭВМ имеется свое характерное значение достигаемой точности.

Время работы алгоритма зависит от числа действий , необходимых для достижения заданной точности. Для любой математической задачи, как правило, можно предложить несколько алгоритмов, позволяющих получить решение с заданной точностью, но за разное число действий . Алгоритмы, включающие меньшее число действий для достижения одинаковой точности, будем называть более экономичными, или более эффективными.

В процессе работы вычислительного алгоритма на каждом акте вычислений возникает некоторая погрешность. При этом от действия к действию она может возрастать или не возрастать (а в некоторых случаях даже уменьшаться). Если погрешность в процессе вычислений неограниченно возрастает, то такой алгоритм называется неустойчивым, или расходящимся. В противном случае алгоритм называется устойчивым, или сходящимся.

Выше уже отмечалось, что вычислительная математика объединяет огромный пласт разнообразных, быстро развивающихся численных и приближенных методов, поэтому практически невозможно привести их законченную классификацию. Стремление получить более точные, эффективные и устойчивые вычислительные алгоритмы приводит к появлению многочисленных модификаций, учитывающих специфические особенности конкретной математической задачи или даже особенности моделируемых объектов.

Можно выделить следующие группы численных методов по объектам, к которым они применяются:

интерполяция и численное дифференцирование;

численное интегрирование;

определение корней линейных и нелинейных уравнений;

решение систем линейных уравнений (подразделяют на прямые и итерационные методы);

решение систем нелинейных уравнений;

решение задачи Коши для обыкновенных дифференциальных уравнений;

решение краевых задач для обыкновенных дифференциальных уравнений;

решение уравнений в частных производных;

решение интегральных уравнений.

Огромное разнообразие численных методов в значительной степени затрудняет выбор того или иного метода в каждом конкретном случае. Поскольку для реализации одной и той же модели можно использовать несколько альтернативных алгоритмических методов, то выбор конкретного метода производится с учетом того, какой из них больше подходит для данной модели с точки зрения обеспечения эффективности, устойчивости и точности результатов, а также более освоен и знаком членам рабочей группы. Освоение нового метода, как правило, очень трудоемко и связано с большими временными и финансовыми затратами. При этом основные затраты связаны с разработкой и отладкой необходимого программного обеспечения для соответствующего класса ЭВМ, обеспечивающего реализацию данного метода.

Следует отметить, что вычислительная математика в определенном смысле являет собой более искусство, нежели науку (в понимании последней как области культуры, базирующейся на формальной логике). Очень часто эффективность применяемых методов, разработанных программ определяется нарабатываемыми годами и десятками лет интуитивными приемами, не обоснованными с математических позиций. В связи с этим эффективность одного и того же метода может весьма существенно отличаться при его применении различными исследователями.

Пример. Аналитическое решение задачи о баскетболисте.

Константы интегрирования найдем из начальных условий (2.6). Тогда решение задачи можно записать следующим образом:

,
, , (2.9)

Для получения решения рассмотренной выше задачи о баскетболисте можно использовать как аналитические, так и численные методы. Проинтегрировав соотношения записанные на прошлой паре по времени, получим

, , , , (2.10)

Примем для простоты, что в момент броска мяч находится в начале координат и на одном уровне с корзиной (т.е. ). Под дальностью броска будем понимать расстояние вдоль оси , которое пролетит мяч от точки броска до пересечения с горизонтальной плоскостью, проходящей через кольцо корзины. Из соотношений (2.10) дальность броска выразится следующим образом:

(2,11)

С учетом (2.7) точность броска

(2.12)

Например, при броске мяча со штрафной линии можно принять следующие исходные данные: ; м; м/с; . Тогда из (2.11) и (2.12) имеем м; м.

Пример . Алгоритмическое решение задачи о баскетболисте.

В простейшем случае можно использовать метод Эйлера. Алгоритм решения данной задачи на псевдокоде приведен ниже.

Алгоритм 2.1

program basket {Задача о баскетболисте};

{Данные : m, R - масса и радиус мяча;

x0, y0 - начальные координаты мяча;

v0, a0 - начальная скорость и угол броска мяча;

xk, yk - координаты центра корзины;

t - текущее время;

dt - шаг по времени;

fx, fy - силы, действующие на мяч;

x, y, vx, vy - текущие координаты и проекции скорости мяча.

Результаты : L и D - дальность и точность броска.}

m:=0.6; R:=0.12;

v0:=6.44; a0:=45;

вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель . Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

  1. аналитические;
  2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей .

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

  1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
  2. аппроксимационные задачи ( интерполяция , экстраполяция, численное интегрирование и дифференцирование ),
  3. задачи оптимизации,
  4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование .

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями , имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

  1. детерминированные,
  2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра .

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

  1. непрерывные,
  2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

  1. статические,
  2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между

Признак классификации Экономико-математические модели
Общее целевое назначение Степень агрегирования объектов моделирования Конкретное назначение Тип используемой в модели информации Фактор времени Фактор неопределенности Тип математического аппарата Тип подхода к изучаемым социально-экономическим системам Теоретико-аналитические Прикладные Макроэкономические Микроэкономические Балансовые Трендовые Оптимизационные Имитационные Аналитические Идентифицируемые Статические Динамические Детерминированные Стохастические Матричные модели Модели линейного и нелинейного программиро­вания Корреляционно-регрессионные модели Модели теории массового обслуживания Модели сетевого планирования и управления Модели теории игр Дескриптивные Нормативные

Рассмотрим выделенные классификационные признаки подробнее.

По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении об­щих свойств и закономерностей экономических процессов, и приклад­ные, применяемые в решении конкретных экономических задач анали­за, прогнозирования и управления.

По степени агрегирования объектов моделирования модели делятся на макроэкономические и микроэкономические, хотя между ними и нет четкого разграничения. К первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как мик­роэкономические модели связаны, как правило, с такими звеньями эко­номики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и примене­ния, выделяют:

Балансовые модели, выражающие требование соответствия на­личия ресурсов и их использования;

Трендовые модели, в которых развитие моделируемой экономи­ческой системы отражается через тренд (длительную тенденцию) ее основных показателей;

Оптимизационные модели, предназначенные для выбора наилуч­шего варианта из определенного числа вариантов производства, распределения или потребления;

Имитационные модели, предназначенные для использования в про­цессе машинной имитации изучаемых систем или процессов, и др.

По типу информации, используемой в модели ; экономико-математи­ческие модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и ди­намические, описывающие экономические системы в развитии.

По учету фактора неопределенности модели делятся на детермини­рованные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от дей­ствия случайного фактора.

По типу математического аппарата, используемого в модели, т.е. по характеристике математических объектов, включенных в модель, могут быть выделены матричные модели, модели линейного и нели­нейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирова­ния и управления, модели теории игр и т.д.

По типу подхода к изучаемым социально-экономическим системам вы­деляют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получают модели, предназначенные для опи­сания и объяснения фактически наблюдаемых явлений или для про­гноза этих явлений. В качестве примера дескриптивных моделей мож­но привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а тем, как она должна быть устро­ена и как должна действовать согласно определенным критериям.

Проблемы моделирования. Как все средства и методы, модели науки управления в случае их применения могут привести к ошибкам. Эффек­тивность модели иногда снижается действием ряда потенциальных по­грешностей.

Недостоверные исходные допущения. Любая модель опирается на не­которые исходные допущения, или предпосылки. Это могут быть под­дающиеся оценке предпосылки, например то, что расходы на рабочую силу в следующие шесть месяцев составят 200 тыс. долл. Такие предпо­ложения можно объективно проверить и просчитать. Вероятность их точности будет высока. Некоторые предпосылки не поддаются оценке и не могут быть объективно проверены. Предположение о росте сбыта в будущем году на 10 % - пример допущения, не поддающегося провер­ке. Никто не знает наверняка, произойдет ли это действительно. По­скольку такие предпосылки - основа модели, точность последней за­висит от точности предпосылок. Модель нельзя использовать для прогнозирования, например, потребности в запасах, если неточны про­гнозы сбыта на предстоящий период.

В дополнение к допущениям по поводу компонентов модели руко­водитель формулирует предпосылки относительно взаимосвязей внут­ри нее. К примеру, модель, предназначенная помочь решить, сколько галлонов краски разных типов следует производить, должна, вероятно, включать допущение относительно зависимости между продажной це­ной и прибылью, а также стоимостью материалов и рабочей силы. Точ­ность модели зависит также от точности этих взаимосвязей.

Информационные ограничения. Основная причина недостоверности предпосылок и других затруднений - ограниченные возможности в получении нужной информации, которые влияют и на построение, и на использование моделей. Точность модели определяется точностью информации по проблеме. Если ситуация исключительно сложна, спе­циалист по науке управления может быть не в состоянии получить ин­формацию по всем релевантным факторам или встроить ее в модель. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но это может быть нереализуемо или непрактично.

Иногда при построении модели игнорируются существенные аспек­ты, поскольку они не поддаются измерению. Например, модель опре­деления эффективности новой технологии будет некорректной, если в нее встроена только информация о снижении издержек в соответствии с увеличением специализации. В общем, построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая ин­формация настолько неопределенна, что ее трудно получить исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и по­мощь консультантов.

Страх пользователей. Модель нельзя считать эффективной, если ею не пользуются. Основная причина неиспользования модели заключа­ется в том, что руководители, которым она предназначена, могут не вполне понимать получаемые с помощью модели результаты и потому боятся ее применять. Для борьбы с этим возможным страхом специали­стам по количественным методам анализа следует значительно больше времени уделять ознакомлению руководителей с возможностями и по­рядком использования моделей. Руководители должны быть подготов­лены к применению моделей, а высшему руководству следует подчер­кивать, насколько успех организации зависит от моделей и как они повышают способность руководителей эффективно планировать и кон­тролировать работу организации.

Слабое использование на практике. Согласно ряду исследований уро­вень методов моделирования в рамках науки управления превосходит уровень использования моделей. Как указывалось выше, одна из причин такого положения дел - страх. Другими причинами могут быть недоста­ток знаний и сопротивление переменам. Данная проблема подкрепляет желательность того, чтобы на стадии построения модели штабные спе­циалисты привлекали к этому пользователей. Когда люди имеют воз­можность обсудить и лучше понять вопрос, метод или предполагаемое изменение, их сопротивление обычно снижается.

Чрезмерная стоимость. Выгоды от использования модели, как и дру­гих методов управления, должны с избытком оправдывать ее стоимость. При установлении издержек на моделирование руководству следует учи­тывать затраты времени руководителей высшего и низшего уровней на построение модели и сбор информации, расходы, время на обучение, стоимость обработки и хранения информации.

Основные модели, используемые для разработки управленческих реше­ний. Существует огромное множество конкретных моделей, использу­емых для разработки управленческих решений. Их число также велико, как и число проблем, для разрешения которых они были разработаны .

В общем виде в составе экономико-математических моделей можно выделить следующие:

Модели линейного программирования;

Оптимальные экономико-математические модели (имитацион­ные модели, модели сетевого планирования и управления);

Модели анализа динамики экономических процессов;

Модели прогнозирования экономических процессов (трендовые мо­дели на основе кривых роста, адаптивные модели прогнозирования);

Балансовые модели;

Эконометрические модели;

Прочие прикладные модели экономических процессов (модель спроса и предложения, модели управления запасами, модели те­ории массового обслуживания, модели теории игр).

Рассмотрим подробнее некоторые из перечисленных моделей, наи­более часто использующиеся в практике управления.

Модели теории игр. Одна из важнейших переменных, от которой за­висит успех организации, - конкурентоспособность. Очевидно, спо­собность прогнозировать действия конкурентов означает преимуще­ство для любой организации. Теория игр - это метод моделирования воздействия принятого решения на конкурентов.

Теорию игр изначально разработали военные с тем, чтобы в страте­гии можно было учесть возможные действия противника. В бизнесе игровые модели используются для прогнозирования реакции конку­рентов на изменение цен, новые кампании поддержки сбыта, предло­жения дополнительного обслуживания, модификацию и освоение но­вой продукции. Если, например, с помощью теории игр руководство устанавливает, что при повышении цен конкуренты не сделают того же, оно, вероятно, должно отказаться от этого шага, чтобы не попасть в невыгодное положение в конкурентной борьбе.

Теория игр используется не так часто, как другие описываемые здесь модели, так как ситуации реального мира зачастую очень сложны и на­столько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики фирмы. Тем не ме­нее теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет руководству учесть дополнительные переменные или факторы, могу­щие повлиять на ситуацию, и тем самым повышает эффективность ре­шения . Подробнее элементы теории игр рассмотрены в главе, посвященной разработке управленческих решений в условиях неопреде­ленности и риска.

Модели теории массового обслуживания используются для определе­ния оптимального числа каналов обслуживания по отношению к по­требности в них. К ситуациям, в которых модели теории массового об­служивания могут быть полезны, можно отнести ожидание клиентами банка свободного кассира, очередь грузовиков под разгрузку на склад. Если, например, клиентам приходится слишком долго ждать кассира, они могут решить перенести свои счета в другой банк. Подобным обра­зом, если грузовикам приходится слишком долго дожидаться разгруз­ки, они не смогут выполнить положенное количество ездок за день.

Таким образом, принципиальная проблема заключается в уравнове­шивании расходов на дополнительные каналы обслуживания: требует­ся больше людей для разгрузки грузовиков, больше кассиров и потерь от обслуживания на уровне ниже оптимального (грузовики не могут сде­лать лишнюю поездку из-за задержек под разгрузкой, потребители уходят в другой банк из-за медленного обслуживания).

Так, модели очередей снабжают руководство инструментом опреде­ления оптимального числа каналов обслуживания, которые необходи­мо иметь, чтобы в случаях чрезмерно малого и чрезмерно большого их количества сбалансировать издержки .

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач массового об­служивания, в которых входящий поток требований простейший (пуас-соновский).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность поступления P k (t) за время t равно k требований задается формулой

Важная характеристика систем массового обслуживания - время об­служивания требований в системе. Время обслуживания одного требо­вания - это, как правило, случайная величина и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории, особенно в практических приложениях, получил экспоненци­альный закон распределения времени обслуживания. Функция распре­деления для этого закона имеет вид:

т.е. вероятность того, что время обслуживания не превосходит неко­торой величины t , определяется этой формулой, где (µ - параметр экс­поненциального закона распределения времени, необходимого для об­служивания требований в системе, т.е. величина, обратная среднему времени обслуживания t об :

Рассмотрим аналитические модели наиболее распространенных си­стем массового обслуживания с ожиданием, т.е. таких систем, в которых требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслуживаются по мере освобождения ка­налов.

Общая постановка задачи состоит в следующем. Система имеет п обслуживающих каналов, каждый из которых может одновременно об­служивать только одно требование. В систему поступает простейший (пуассоновский) поток требований с параметром λ.

Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше п требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслужи­вания.

Время обслуживания каждого требования t об - случайная величина, которая подчиняется экспоненциальному закону распределения с па­раметром µ.

Системы массового обслуживания с ожиданием можно разбить на две большие группы: замкнутые и разомкнутые. К замкнутым относят­ся системы, в которых поступающий поток требований возникает в са­мой системе и ограничен. Например, мастер, задача которого - налад­ка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится потенциальным источником требова­ний на накладку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно. Если питающий источ­ник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток тре­бований можно считать неограниченным.

Отмеченные особенности функционирования систем этих двух ви­дов накладывают определенные условия на используемый математи­ческий аппарат. Расчет характеристик работы систем массового обслу­живания различного вида может быть проведен на основе расчета вероятностей состояний систем (так называемые формулы Эрланга).

Рассмотрим алгоритмы, предназначенные для расчета качества функ­ционирования разомкнутой системы массового обслуживания с ожиданием.

При изучении таких систем рассчитывают различные показатели эффективности обслуживающей системы. В качестве основных показа­телей могут быть вероятность того, что все каналы свободны или заня­ты, математическое ожидание длины очереди (средняя длина очере­ди), коэффициенты занятости и простоя каналов обслуживания и др.

Введем в рассмотрение параметр α = λ / µ. Заметим, что если α / п < 1, то очередь не может расти безгранично. Это условие имеет следующий смысл: λ,-среднее число требований, поступающих за единицу време­ни; 1/ µ - среднее время обслуживания одним каналом одного требова­ния, тогда α = λ х 1 / µ - среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступающие требо­вания. Поэтому условие α / п < 1 означает, что число обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требова­ния. Важнейшие характеристики работы систем массового обслужива­ния:

1) вероятность того, что все обслуживающие каналы свободны:

2) вероятность того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находящихся на обслуживании, не превосходит числа обслуживающих аппаратов:

3) вероятность того, что в системе находится k требований в случае, когда их число больше числа обслуживающих каналов:

4) вероятность того, что все обслуживающие каналы заняты:

5) среднее время ожидания требования в системе:


6) средняя длина очереди:


7) среднее число свободных от обслуживания каналов:

8) коэффициент простоя каналов:

9) среднее число занятых обслуживанием каналов:

10) коэффициент загрузки каналов:


При рассмотрении замкнутых систем массового обслуживания к постановке задачи следует добавить условие: поток поступающих тре­бований ограничен, т.е. в системе одновременно не может находиться больше т требований (т - число обслуживаемых объектов) .

Модели управления запасами используются для того, чтобы опреде­лить время размещения заказов на ресурсы и их количество, а также массу готовой продукции на складах. Любая организация должна под­держивать некоторый уровень запасов во избежание задержек на произ­водстве и в сбыте. Для больницы требуется поставка необходимого ко­личества лекарств, для производственной фирмы - сырья и деталей, а также определенный задел незавершенного производства и запас гото­вой продукции.

Цель данной модели - сведение к минимуму отрицательных по­следствий накопления запасов, которые выражаются в определенных издержках. Эти издержки бывают трех основных видов:

На размещение заказов;

На хранение;

Потери, связанные с недостаточным уровнем запасов.

Последние имеют место при исчерпании запасов. В этом случае про­дажа готовой продукции или предоставление обслуживания невозмож­но, кроме того, возникают потери от простоя производственных ли­ний, в частности в связи с необходимостью оплаты труда работников, хотя они не работают в данный момент.

Поддержание высокого уровня запасов избавляет от потерь. Закупка в больших количествах материалов, необходимых для создания запа­сов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку фирма может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками - расходами на хране­ние, перегрузку, выплату процентов, затратами на страхование, потеря­ми от порчи, воровства и дополнительными налогами.

Кроме того, руководство должно учитывать возможность связыва­ния оборотных средств избыточными запасами, что препятствует вло­жению капитала в приносящие прибыль акции, облигации или банков­ские депозиты. Разработано несколько специфических моделей, помогающих руководству установить, когда и сколько материалов зака­зывать в запас, какой уровень незавершенного производства и запаса готовой продукции поддерживать .

В практической деятельности организации часто используются сле­дующие системы регулирования товарных запасов .

Система с фиксированным размером заказа - наиболее распростра­ненная система, в которой размер заказа на пополнение запасов - по­стоянная величина, а поставка очередной партии товара осуществляет­ся при уменьшении наличных запасов до определенного критического уровня, называемого точкой заказа. Регулирующие параметры системы с фиксированным размером заказа - это:

Точка заказа, т.е. фиксированный уровень запаса, при снижении до которого организуется заготовка очередной партии товара;

Размер заказа, т.е. величина партии поставки.

Данную систему часто называют «двухбункерной», так как запас хра­нится как бы в двух бункерах: в первом - для удовлетворения спроса в течение периода между фактическим пополнением запаса и датой сле­дующего ближайшего заказа, а во втором -для удовлетворения спроса в течение периода от момента подачи заказа до поступления очередной партии товара, т.е. во втором бункере хранится запас на уровне точки заказа.

Система с фиксированной периодичностью заказа - заказы на оче­редную поставку товарного запаса повторяются через равные проме­жутки времени. В конце каждого периода проверяется уровень запасов и определяется размер заказываемой партии. При этом запас пополня­ется каждый раз до определенного уровня, не превышающего макси­мальный запас. Таким образом, регулирующие параметры этой систе­мы - это:

Максимальный уровень запасов, до которого осуществляется их пополнение;

Продолжительность периода повторения заказов.

Система с фиксированной периодичностью заказа эффективна, когда имеется возможность пополнять запас в различных размерах, причем затраты на оформление заказа любого размера невелики. Одним из до­стоинств этой системы можно считать возможность периодической проверки остатков на складе и отсутствие необходимости вести систе­матический учет движения остатков. К недостаткам системы относится то, что она не исключает возможность нехватки товарных запасов.

Система с двумя фиксированными уровнями запасов и фиксированной периодичностью заказа - допустимый уровень запасов регламентирует­ся как сверху, так и снизу. Кроме максимального верхнего уровня запаса устанавливается нижний уровень (точка заказа).

Если размер запаса снижается до нижнего уровня раньше наступле­ния фиксированного времени пополнения запаса, то делается внеоче­редной заказ. В остальных случаях система функционирует как система с фиксированной периодичностью заказа. В данной системе имеется три регулирующих параметра:

Максимальный уровень запаса;

Нижний уровень запаса (точка заказа);

Длительность периода между заказами.

Первые два параметра постоянны, третий - частично переменный. Рассматриваемая система сложнее предыдущей, однако она позволяет исключить возможность нехватки товарного запаса. Недостаток систе­мы в том, что пополнение запасов до максимального уровня не может производиться независимо от фактического расходования запасов.

Система с двумя фиксированными уровнями запасов без постоянной пе­риодичности заказа, или (s, S)-стратегия управления запасами, - эту си­стему называют также (S-s)-стратегией, или системой «максимум-ми­нимум». Рассмотрим (s, S)-стратегию управления запасами более подробно. Это модификация предыдущей системы, но она устраняет недостаток предыдущей системы. В этой системе два регулирующих параметра:

Нижний (критический) уровень запаса s;

Верхний уровень запаса S.

Если через х обозначить величину запасов до принятия решения об их пополнении, через p - величину пополнения, а через у = х + р - величину запасов после пополнения, то (s, S)-стратегия управления за­пасами задается функцией


т.е. пополнения не происходит, если имеющийся уровень запасов боль­ше критического уровня s; если имеющийся уровень меньше или равен s, то принимается решение о пополнении запаса обязательно до верх­него уровня S, так что величина пополнения равна p = S - x.

Саморегулирующиеся системы управления запасами. Рассмотренные выше системы регулирования запасов предполагают относительную неизменность условий их функционирования. На практике такое по­стоянство условий встречается редко, что вызвано изменениями по­требности в товарных запасах, условиями их поставки и т.д. В связи с этим возникает необходимость создания комбинированных систем с возможностью саморегулирования (адаптации к изменившимся усло­виям). Создаются системы с изменяющимися периодичностью и размером заказов, учитывающие стохастические (недетерминирован­ные) условия. В каждой такой системе в рамках соответствующей эконо­мико-математической модели управления запасами устанавливается определенная целевая функция, служащая критерием оптимальности функционирования системы. В качестве целевой функции в моделях управления запасами чаще всего используется минимум затрат, свя­занных с заготовкой и хранением запасов, а также потери от дефицита. К элементам целевой функции при построении саморегулирующихся систем управления запасами относятся:

Затраты, связанные с организацией заказа и его реализацией, на­чиная с поиска поставщика и кончая оплатой всех услуг по дос­тавке товарных запасов на склад. Часть расходов, связанных с орга­низацией заказов, не зависит от размера заказа, но зависит от количества этих заказов в год. Расходы, связанные с реализацией заказа, зависят от размера заказанной партии, причем расходы в расчете на единицу товара уменьшаются при увеличении разме­ра партии;

Затраты, связанные с хранением запаса. Часть издержек хране­ния носит суточный характер (плата за аренду помещений, за отопление и др.), другая часть прямо зависит от уровня запасов (расходы на складскую переработку товарных запасов, потери от порчи, издержки учета и др.). При расчетах на основе экономи­ко-математических моделей управления запасами обычно пользу­ются удельной величиной издержек хранения, равной размеру издержек на единицу хранимого товара в единицу времени. При этом предполагают, что издержки хранения за календарный пе­риод прямо пропорциональны размеру запасов и длительности периода между заказами и обратно пропорциональны количе­ству заказов за этот период.

3) потери из-за дефицита, когда снабженческо-сбытовая организа­ция несет материальную ответственность за неудовлетворение потреб­ности потребителей по причине отсутствия запасов . Например, при неудовлетворенном спросе снабженческо-сбытовая организация может нести убытки в виде штрафа за срыв поставки. Вероятность де­фицита - это ожидаемая относительная частота случаев нехватки то­варной продукции в течение более или менее продолжительного ин­тервала времени. Иногда вероятность дефицита определяется как частное отделения числа дней, когда товар на складе отсутствует, на общее число рабочих дней, например, в году.

Имитационное моделирование. Все описанные выше модели подра­зумевают применение имитации в широком смысле, поскольку все они - заменители реальности. Тем не менее как метод моделирования имитация конкретно обозначает процесс создания модели и ее экспе­риментальное применение для определения изменений реальной си­туации. Аэродинамическая труба - пример физически осязаемой ими-тационной модели, используемой для проверки характеристик разрабатываемых самолетов и автомобилей. Специалисты по производ­ству и финансам могут разработать модели, позволяющие имитировать ожидаемый прирост производительности и прибылей в результате при­менения новой технологии или изменения состава рабочей силы. Спе­циалист по маркетингу может создать модели для имитации ожидаемо­го объема сбыта в связи с изменением цен или рекламы продукции.

Имитация используется в ситуациях, слишком сложных для мате­матических методов типа линейного программирования. Это может быть связано с чрезмерно большим числом переменных, трудностью мате­матического анализа определенных зависимостей между переменными или высоким уровнем неопределенности.

Итак, имитация - это часто весьма практичный способ подстанов­ки модели на место реальной системы или натурного прототипа. Экс­периментируя на модели системы, можно установить, как она будет реагировать на определенные изменения или события, в случае если отсутствует возможность наблюдать эту систему в реальности. Если ре­зультаты экспериментирования с использованием имитационной мо­дели свидетельствуют о том, что модификация ведет к улучшению, ру­ководитель может с большей уверенностью принимать решение об осуществлении изменений в реальной системе.

Экономический анализ. Почти все руководители воспринимают ими-тацию как метод моделирования. Однако многие из них никогда не думали, что экономический анализ - очевидно, наиболее распростра­ненный метод - это тоже одна из форм построения модели. Экономи­ческий анализ вбирает в себя почти все методы оценки издержек и эко­номических выгод, а также относительной рентабельности деятельности предприятия. Типичная экономическая модель основана на анализе безубыточности, методе принятия решений с определением точки, в которой общий доход уравнивается с суммарными издержками, т.е. точ­ки, в которой предприятие становится прибыльным.

Тонка безубыточности (break-even point - ВЕР) - ситуация, при ко­торой общий доход (total revenue - TR ) становится равным суммарным издержкам (total costs - ТС). Для определения ВЕР необходимо учесть три основных фактора:

Продажную цену единицы продукции (unit price - Р) - доход фирмы от продажи каждой единицы товаров или услуг. Изда­тельская компания, к примеру, получает 80 % от розничной це­ны книги. Таким образом, при продаже одной книги за 10 долл. Р составит 8 долл.;

Переменные издержки на единицу продукции (variable costs - VС) - фактические расходы, прямо относимые на изготовление каждой единицы продукции. Применительно к изготовлению книги это будут расходы на бумагу, обложку, услуги типографии, изготовление переплета и сбыт, а также выплата авторского гоно­рара. Естественно, совокупные переменные издержки растут с ростом объема производства;

Общие постоянные издержки на единицу продукции (total fixed costs - ТFС) - те издержки, которые, по меньшей мере, в ближай­шей перспективе, остаются неизменными независимо от объема производства. Основные составляющие совокупных постоянных издержек издательской компании - расходы на редактирование, оформление и набор. Кроме того, часть управленческих расхо­дов, расходы на страхование и налоги, аренду помещения и амор­тизационные отчисления переводятся в постоянные издержки в соответствии с формулой, установленной руководством. В нашем примере предположим, что постоянные издержки, связанные с производством книги, равны 200 тыс. долл.

Продажная цена за вычетом переменных издержек обозначает вклад в прибыль на единицу проданной продукции. При продажной цене книги 10 долл. и переменных издержках 6 долл. вклад составит 4 долл. Этот расчет позволяет руководству установить, сколько книг нужно про­дать, чтобы покрыть постоянные издержки в сумме 200 тыс. долл. Раз­делив 200 тыс. на 4, мы получим 50 тыс., т.е. именно столько книг необ­ходимо продать, чтобы проект был рентабельным. В форме уравнения безубыточность выражается следующим образом:


Используя формулу, мы получим на базе тех же данных те же резуль­таты, как и при простом подсчете:

P = 10 долл.;

VC = 6 долл.;

TFC = 200 000 долл.;

BEP = ТFС/(Р- VC) = 200 000/4 = 50 000 книг.

Вычисление точки безубыточности, будучи сравнительно простой операцией, дает значительный объем полезной информации. Соотно­ся величину ВЕР иоценку объема продажи, получаемую методами ана­лиза рынка, руководитель в состоянии сразу увидеть, будет ли проект прибыльным, как запланировано, и каков примерный уровень риска. Если анализ издательского рынка показал, что потенциал сбыта состав­ляет 80 000 экземпляров, это значит, что издание будет прибыльным и сопряжено с относительно малым риском. Намерение продать всего, к примеру, 35 000 книг было бы весьма рискованным.

Легко можно также установить, как влияет на прибыль изменение одной или большего числа переменных. Например, издатель увели­чивает Р с 1 до 11 долл., ВЕР должна снизиться до 40 000 книг, что должно произойти и при соответствующем изменении величины VC. Таким образом, анализ безубыточности помогает выявить альтерна­тивные подходы, которые были бы более привлекательными для фир­мы. Например, рынок сбыта научных книг гораздо уже, чем, скажем, рынок учебников по вводным курсам, поэтому издатели вынуждены выплачивать менее высокие гонорары авторам научных книг и отказы­ваться от второго цвета при печати. Такой подход позволяет вдвое сни­зить общие издержки по сравнению с учебниками по вводным курсам. Отметим, однако, что в результате внешний вид книги ухудшается, а это может заставить потенциальных потребителей обратиться к продукции конкурента, в результате чего сбыт упадет ниже точки безубы­точности.

Получив результаты по сбыту и данные по фактическим издержкам, руководство может вернуться к модели безубыточности для контрольной оценки. Если фактические значения постоянных и переменных издер­жек превышают те, что использованы для расчета точки безубыточно­сти, это свидетельствует о необходимости корректирующих действий. Зачастую эти действия должны сводиться к новому анализу основы рас­чета. Как любые другие прогнозы и планы, те, что использованы в ана­лизе безубыточности, могут быть ошибочными, и зачастую по причи­нам, не находящимся под контролем руководителя. К примеру, в начале 1970-х гг. многие издатели столкнулись с уменьшением прибыли в силу внезапного скачка цен на бумагу, который невозможно было полностью переложить на потребителей.

Объем производства, обеспечивающий безубыточность, можно рас­считать почти по каждому виду продукции или услуге, если соответ­ствующие издержки удается определить.

Другие модели экономического анализа применяются для определе­ния прибыли относительно инвестированного капитала, определения величины чистой прибыли, которую имеет в данный период фирма, и дивидендов на одну акцию внутри фирмы. Эти модели рассматриваются в курсах по финансам и бухгалтерскому учету .

Оптимальное линейное программирование. Необходимое условие оптимального подхода к планированию и управлению (принципа оп­тимальности) - гибкость, альтернативность производственно-хозяй­ственных ситуаций, в условиях которых приходится принимать плано­во-управленческие решения. Именно такие ситуации, как правило, и составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, марш­рутизация, раскрой материалов, приготовление смесей и т.д.).

Суть принципа оптимальности состоит в стремлении выбрать такое планово-управленческое решение = (x 1 ,x 2 ,…,x n), где x j , (j = ) - его компоненты, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хо­зяйствующего субъекта.

Слова «наилучшим образом» здесь означают выбор некоторого кри­терия оптимальности, т.е. некоторого экономического показателя, по­зволяющего сравнивать эффективность тех или иных планово-управлен­ческих решений. Традиционные критерии оптимальности - «максимум прибыли», «минимум затрат», «максимум рентабельности» и др.

Слова «учитывало бы внутренние возможности и внешние условия производственной деятельности» означают, что на выбор планово-уп­равленческого решения (поведения) накладывается ряд условий, т.е. выбор осуществляется из некоторой области возможных (допусти­мых) решений D ; эту область называют также областью определения задачи.

Таким образом, реализовать на практике принцип оптимальности - значит решить экстремальную задачу вида:

где- математическая запись критерия оптимальности - целе­вая функция. Задачу условной оптимизации обычно записывают таким образом: _

Найти максимум или минимум функции f = f (x 1 ,x 2 ,..., х п) при ограничениях:

Последнее условие необязательно, но его при необходимости всегда можно добиться. Обозначение {≤, =, ≥} говорит о том, что в конкрет­ном ограничении возможен один из знаков: ≤, =, ≥. Используется бо­лее компактная запись:

Такова общая задача оптимального (математического) программи­рования, т.е. математическая модель задачи оптимального программи­рования, в основе построения (разработки) которой лежат принципы оптимальности и системности.

Вектор (набор управляющих переменных x j , j = называет­ся допустимым решением, или планом задачи оптимального йрограм-мирования, если он удовлетворяет системе ограничений. А тот план (допустимое решение), который составляет максимум или минимум целевой функции f (x 1 ,x 2 ,..., х п) называется оптимальным планом (оп­тимальным поведением, или просто решением) задачи оптимального программирования .

Таким образом, выбор оптимального управленческого поведения в конкретной производственной ситуации связан с проведением с пози­ций системности и оптимальности экономико-математического моде­лирования и решением задачи оптимального программирования.

IDEF-технологии моделирования . Своим появлением семейство стан­дартов IDEF (Integrated Defenition - интегрированное определение) во многом обязано появившейся в 1980-х гг. технологии автоматизации разработки информационных систем CASE (Computer Aided Software Engineering). До настоящего времени эта технология с успехом приме­няется при разработке разнообразного программного обеспечения. Однако в последнее время CASE-технологии приобретают все большее распространение для моделирования и анализа деятельности предпри­ятий, предоставляя богатый набор возможностей для оптимизации, или, в терминах CASE, реинжиниринга, технологических процедур, выполняемых этими предприятиями, - бизнес-процессов.

IDEF0, ранее известный как технология структурированного анали­за и разработки SADT (Structured Analysis Design Technique - техно­логия структурного анализа и моделирования), был разработан компа­нией «SofTech, Inc.» в конце 1960-х гг. и представлял собой набор рекомендаций по построению сложных систем, которые предполагали взаимодействие механизмов и обслуживающего персонала. Подход SADT относится к классу формальных методов, используемых при ана­лизе и разработке систем .

В настоящее время используются методики функционального, ин­формационного и поведенческого моделирования и проектирования, в которые входят IDEF-модели, приведенные в табл. 3.4.

Удобные средства визуального представления информации, описан­ные в стандартах семейства IDEF, могут применяться как для описания деятельности произвольной компании, так и для принятия обоснован­ных решений в сфере реинжиниринга бизнес-процессов - оптимиза­ции функционирования компании на рынке.