Структурные уровни материи. Контрольная работа: Структурные уровни организации материи: макромир, микромир, мегамир. Особенности биологического уровня развития материи


В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система – сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали – координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали – связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности – это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.

В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие "уровень организации" в отличие от понятия "структура" включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом.

Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия – мера беспорядка). До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации.

В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.

Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен). Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.

Современные взгляды на структурную организацию материи

В классическом естествознании учение о принципах структурной организации материи было представлено классическим атомизмом. Идеи атомизма служили фундаментом для синтеза всех знаний о природе. В XX веке классический атомизм подвергся радикальным преобразованиям.

Современные принципы структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно – статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми.

Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.

Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.

Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos – целый), согласно которому целое всегда предшествует частям и всегда важнее частей.

Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.

Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация – это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.

В современной научно обоснованной концепции системной организации материи обычно выделяют три структурных уровня материи:

  • микромир – мир атомов и элементарных частиц – предельно малых непосредственно ненаблюдаемых объектов, размерность от 10 -8 см до 10-16 см, а время жизни – от бесконечности до 10-24 с.
  • макромир – мир устойчивых форм и соразмерных человеку величин: земных расстояний и скоростей, масс и объемов; размерность макрообъектов соотносима с масштабами человеческого опыта – пространственные величины от долей миллиметра до километров и временные измерения от долей секунды до лет.
  • мегамир – мир космоса (планеты, звездные комплексы, галактики, метагалактики); мир огромных космических масштабов и скоростей, расстояние измеряется световыми годами, а время миллионами и миллиардами лет;

Изучение иерархии структурных уровней природы связано с решением сложнейшей проблемы определения границ этой иерархии как в мегамире, так и в микромире. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и их объединений.

Микромир, будучи подуровнем макромиров и мегамиров, обладает совершенно уникальными особенностями и поэтому не может быть описан теориями, имеющими отношение к другим уровням природы. В частности, этот мир изначально парадоксален. Для него не применим принцип «состоит из». Так, при соударении двух элементарных частиц никаких меньших частиц не образуется. После столкновения двух протонов возникает много других элементарных частиц – в том числе протонов, мезонов, гиперонов. Феномен «множественного рождения» частиц объяснил Гейзенберг: при соударении большая кинетическая энергия превращается в вещество, и мы наблюдаем множественное рождение частиц. Микромир активно изучается. Если 50 лет назад было известно всего лишь 3 типа элементарных частиц (электрон и протон как мельчайшие частицы вещества и фотон как минимальная порция энергии), то сейчас открыто около 400 частиц. Второе парадоксальное свойство микромира связано с двойственной природой микрочастицы, которая одновременно является волной и корпускулой. Поэтому ее невозможно строго однозначно локализовать в пространстве и времени. Эта особенность отражена в принципе соотношения неопределенностей Гейзенберга.

Наблюдаемые человеком уровни организации материи осваиваются с учетом естественных условий обитания людей, т.е. с учетом наших земных закономерностей. Однако это не исключает предположения о том, что на достаточно удаленных от нас уровнях могут существовать формы и состояния материи, характеризующиеся совсем другими свойствами. В связи с этим ученые стали выделять геоцентрические и негеоцентрические материальные системы.

Геоцентрический мир – эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба. Негеоцентрические системы – особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением, нежели земные. Существует предположение о том, что микромир и мегамир – это окна в негеоцентрические миры, а значит, их закономерности хотя бы в отдаленной степени позволяют представить иной тип взаимодействий, чем в макромире или геоцентрическом типе реальности.

Солнечная система в представлении художника. Масштабы расстояний от Солнца не соблюдены

Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он начинается с расстояний около 10 7 и масс 10 20 кг. Опорной точкой начала мегамира может служить Земля. Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.

Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца.

Световой год – расстояние, которое проходит свет в течение одного года.

Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде.

Небесные тела во Вселенной образуют системы различной сложности. Так Солнце и движущиеся вокруг него 9 планет образуют Солнечную систему. Основная часть звезд нашей галактики сосредоточена в диске, видимом с Земли «сбоку» в виде туманной полосы, пересекающей небесную сферу – Млечного Пути.

Все небесные тела имеют свою историю развития. Возраст Вселенной равен 14 млрд. лет. Возраст Солнечной системы оценивается в 5 млрд. лет, Земли – 4,5 млрд. лет.

Еще одна типология материальных систем имеет сегодня достаточно широкое распространение. Это деление природы на неорганическую и органическую, в которой особое место занимает социальная форма материи. Неорганическая материя – это элементарные частицы и поля, атомные ядра, атомы, молекулы, макроскопические тела, геологические образования. Органическая материя также имеет многоуровневую структуру: доклеточный уровень – ДНК, РНК, нуклеиновые кислоты; клеточный уровень – самостоятельно существующие одноклеточные организмы; многоклеточный уровень – ткани, органы, функциональные системы (нервная, кровеносная и др.), организмы (растения, животные); надорганизменные структуры – популяции, биоценозы, биосфера. Социальная материя существует лишь благодаря деятельности людей и включает особые подструктуры: индивид, семья, группа, коллектив, государство, нация и др.



Тема: Структурные уровни организации материи: макромир, микромир, мегамир

Тип: Контрольная работа | Размер: 48.38K | Скачано: 86 | Добавлен 13.10.10 в 12:35 | Рейтинг: +1 | Еще Контрольные работы

Вуз: ВЗФЭИ

Год и город: Уфа 2008


ПЛАН

1. Введение

2. Системный подход к строению материи

3. Взаимосвязь микро-, макро- и мегамиров

4. Представление о классической физике, о поле и веществе, каквидах материи

5. Корпускулярно-волновой дуализм

6. Структура атома с точки зрения современной физики

7. Элементарные частицы и их свойства

8. Модели Вселенной, разработанные в современной космологии

9. Основные этапы эволюции Вселенной с точки зрениясовременной науки

10. Заключение

11. Список использованной литературы

1. ВВЕДЕНИЕ

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями.

Материя (лат. Materia - вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».

Слово «материя» многозначно. В быту им пользуются для обозначения той или иной ткани. Современная астрономия сообщает, что видимая Вселенная насчитывает сотни тысяч звезд, звездных туманностей и других небесных тел. У всех предметов и явлений, несмотря на их разнообразие, есть общая черта: все они существуют вне сознания человека и независимо от него, т.е. являются материальными. Люди открывают все новые и новые свойства природных тел и процессов, производят бесконечное множество несуществующих в природе вещей, следовательно, материя, неисчерпаема.

Материя и ее атрибуты несотворимы и неуничтожимы, существуют вечно и бесконечно разнообразны по форме своих проявлений. Все явления в мире обусловлены естественными материальными связями и взаимодействиями, причинными отношениями и законами природы. В этом смысле в мире нет ничего сверхъестественного и противостоящего материи. Человеческая психика и сознание тоже определяются материальными процессами в мозгу человека и являются высшей формой отражения внешнего мира.

2. СИСТЕМНЫЙ ПОДХОД К СТРОЕНИЮ МАТЕРИИ

Структурность и системная организация материи относятся к числу ее важнейших атрибутов, выражают упорядоченность существования материи и те конкретные формы, в которых она проявляется.

Структура материи . Под структурой материи обычно понимают ее строение в макромире, т.е. существование в виде молекул, атомов, элементарных частиц и т.д. Это связано с тем, что человек является макроскопическим существом и для него привычными являются макроскопические масштабы, поэтому понятие структуры ассоциируется обычно с различными микрообъектами.

Но если рассматривать материю в целом, то понятие структуры материи будет охватывать также макроскопические тела, все космические системы мегамира, причем в любых сколь угодно больших пространственно-временных масштабах. С этой точки зрения, понятие «структура» проявляется в том, что она существует в виде бесконечного многообразия целостных систем, тесно взаимосвязанных между собой, а также в упорядоченности строения каждой системы. Такая структура бесконечна в количественном и качественном отношениях.

Проявлениями структурной бесконечности материи выступают:

  • неисчерпаемость объектов и процессов микромира;
  • бесконечность пространства и времени;
  • бесконечность изменений и развития процессов.

Из всего многообразия форм объективной реальности эмпирически доступной всегда остается лишь конечная область материального мира, которая ныне простирается в масштабах от 10-15 до 1028 см, а во времени - до 2х109 лет.

Структурность и системная организация материи относятся к числу важнейших ее атрибутов. Они выражают упорядоченность существования материи и те ее конкретные формы, в которых она проявляется.

Материальный мир един: мы подразумеваем, что все его части - от неодушевленных предметов до живых существ, от небесных тел до человека как члена общества - так или иначе связаны.

Системой является то, что определенным образом связано между собой и подчинено соответствующим законам.

Система - это внутреннее или внешнее упорядоченное множество взаимосвязанных и взаимодействующих элементов.

Упорядоченность множества подразумевает наличие закономерных отношений между элементами системы, которое проявляется в виде законов структурной организации. Внутренняя упорядоченность имеется у всех природных систем, возникающих в результате взаимодействия тел и естественного саморазвития материи. Внешняя характерна для созданных человеком искусственных систем: технических, производственных, и т.п.

Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.

Критерием для выделения различных структурных уровней служат следующие признаки:

  • пространственно-временные масштабы;
  • совокупность важнейших свойств;
  • специфические законы движения;
  • степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
  • некоторые другие признаки.

3. ВЗАИМОСВЯЗЬ МИКРО-, МАКРО- И МЕГАМИРОВ

Микромир - это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю-даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно-сти до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоро-стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил-лиардами лет.

И хотя на этих уровнях действуют свои специфические зако-номерности, микро-, макро - и мегамиры теснейшим образом взаи-мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 -18 см., за время - порядка 10-22 с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

С увеличением размеров объектов уменьшается энергия взаимодействия. Если принять энергию гравитационного взаимодействия за единицу, то электромагнитное взаимодействие в атоме будет в 10 39 больше, а взаимодействие между нуклонами - составляющими ядро частицами - в 10 41 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.

Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.

Говоря о структурности - внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.

4. ПРЕДСТАВЛЕНИЕ О КЛАССИЧЕСКОЙ ФИЗИКЕ, О ПОЛЕ И ВЕЩЕСТВЕ КАК ВИДАХ МАТЕРИИ

Материя - фундаментальное понятие, связанное с любыми объектами, существующими в природе, о которых мы можем судить благодаря нашим ощущениям. Физика описывает материю как нечто, существующее в пространстве и во времени (в пространстве-времени) - представление, идущее от Ньютона (пространство - вместилище вещей, время - событий); либо как нечто, само задающее свойства пространства и времени - представление, идущее от Лейбница и, в дальнейшем, нашедшее выражение в Общей Теории Относительности Эйнштейна. Изменения во времени, происходящие с различными формами материи, составляют физические явления.

Материя существует в двух видах - вещество и поле. Они строго разделены и их превращение друг в друга невозможно. Главным является поле, а значит основным свойством материи является непрерывность в противовес дискретности (концепция континуального непрерывного строения материи).

Вещество. Классическое вещество может находиться в одном из трех агрегатных состояний: газообразном, жидком или твердом. Кроме того, выделяют высокоионизованное состояние вещества (чаще газообразного, но, в широком смысле, любого агрегатного состояния), называемое плазмой.

В химическом отношении все вещества подразделяют на простые и сложные (химические соединения), а также на неорганические и органические вещества.

Поле в физике — одна из форм материи, характеризующая все точки пространства (или, шире, пространства-времени) и обладающая бесконечным числом степеней свободы. Каждой точке пространства при этом присваивается определённая физическая величина. Эта величина, как правило, меняется при переходе от одной точки к другой. В зависимости от математического вида этой величины выделяют скалярные, векторные, тензорные и спинорные поля.

Также поля делятся в зависимости от своей природы на электромагнитные, гравитационные, магнитное, электрическое и поля ядерных сил. Проявляются поля в виде взаимодействия (переносимого с конечной скоростью) тел (при этом сила взаимодействия определяется различными характеристиками тел: массой для гравитационного поля, зарядом для электромагнитного и т. д.), которые в квантовой физике объясняются передачей специфичных для каждого типа поля частиц (фотонов для электромагнитного, гипотетических гравитонов для гравитационного и т. д.). Долгое время считалось, что поле является только наглядным теоретическим объяснением таких явлений, как световые волны, пока в 1887 Генрих Рудольф Герц не доказал существование электромагнитного поля экспериментально.

5. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ В СОВРЕМЕННОЙ ФИЗИКЕ

Корпускулярно-волновой дуализм - свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других - как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц - фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/1, где р - длина электромагнитной волны, а h - постоянная Планка. Эта формула сама по себе - свидетельство дуализма. В ней слева - импульс отдельной частицы (фотона), а справа - длина волны фотона.

Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/1 (р - импульс электрона, а h - его длина волны де Бройля).

Корпускулярно-волновой дуализм лежит в основе квантовой физики.

6. СТРУКТУРА АТОМА С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ ФИЗИКИ

Гипотеза об атомах как неделимых частицах вещест-ва была возрождена в естествознании и прежде всего в физике и химии для объяснения таких эмпирических законов, как законы Бойля — Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и раз-личных химических законов. В самом деле, закон Бойля — Мариотта утверждает, что объем газа обратно про-порционален его давлению, но не объясняет почему. Аналогично этому при нагревании тела его размеры увеличиваются, но эмпирический закон теплового рас-ширения не объясняет причину такого расширения.

Очевидно, что для такого объяснения необходимо выйти за рамки наблюдаемых зависимостей, которые выражаются в эмпирических законах, и обратиться к теоретическим гипотезам и законам. В отличие от эм-пирических законов они содержат понятия и величины, относящиеся к ненаблюдаемым объектам. Именно та-кими объектами являются атомы, а также образованные из них молекулы. С помощью атомов и молекул в кине-тической теории вещества убедительно объясняются все перечисленные и другие известные эмпирические зако-ны. В химии атом обычно определяют как наименьшую часть или единицу химического элемента.

Однако попытка сведения всех многообразных и слож-ных свойств и закономерностей тел и явлений окружаю-щего мира к более простым вряд ли могла считаться ус-пешной, хотя бы потому, что на каждом уровне познания раскрывались новые границы и находились новые недели-мые последние частицы материи. Вплоть до конца про-шлого века такой частицей считался атом, но крупнейшие открытия в физике привели к отказу от такой точки зре-ния. Среди этих открытий следует отметить, во-первых, обнаружение явлений естественной радиоактивности таких химических элементов, как радий и уран. Оказалось, что эти элементы в естественных условиях испускают специ-фические радиоактивные лучи и в результате превращают-ся в другие химические элементы, а в конечном итоге - свинец. Отсюда непосредственно следовало, что атомы вовсе не являются неизменными, неделимыми и последними кирпичиками мироздания. Вскоре после радиоактивности была открыта мельчайшая частица электричества — электрон. В 1913 г. Э. Резерфорд, исследуя рассеяние α-частиц атомами тяжелых элементов, показал, что основная часть массы атома сосредоточена в его центральной части — ядре, так как вдали от него α -частицы проходят беспрепятственно. Основываясь на этих экспе-риментах, он предложил планетарную модель атома, со-гласно которой вокруг массивного ядра вращаются по сво-им орбитам отрицательно заряженные электроны.

Впоследствии эта модель была значительно модифи-цирована. Оказалось, что элек-троны не могут вращаться по любым орбитам, а только по стационарным, ибо в противном случае они бы не-прерывно излучали энергию и упали бы на ядро, и атом самопроизвольно разрушился. Ничего подобного, одна-ко, не наблюдается, так как атомы являются весьма ус-тойчивыми образованиями. Все эти и связанные с ними революционные открытия невозможно было понять и объяснить с точки зрения старой, классической физики.

После того, когда физики установили, что атом не является последним кирпичиком мироздания и сам он построен из более простых, элементарных частиц, идея поиска таких частиц заняла главное место в их исследо-ваниях. По-прежнему мысль физиков была устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам неболь-шого числа первичных, фундаментальных частиц, кото-рые впоследствии были названы элементарными. Наиболее известными элементарными частицами явля-ются электрон, фотон, пи-мезоны, мюоны, тяжелые лептоны и нейтрино. Позже были открыты частицы с весьма экзотическими названиями: странные частицы, мезоны со скрытым "очарованием ", "очарованные " частицы, ипсилион -частицы, разнообразные резонансные частицы и многие другие. Общее их число превышает 350. Поэтому вряд ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеж-дение усиливается в связи с гипотезой о существовании кварков, из которых, по предположению, построены все известные элементарные частицы.

Одна из характерных особенностей элементарных частиц состоит в том, что они имеют крайне незначи-тельные массы и размеры. Масса большинства из них — порядка массы протона, т. е. 1,6 х 10 -24г, а размеры порядка 10 -16 см. Другое их свойство заключается в способности рождаться и уничтожаться, т. е. испускать-ся и поглощаться при взаимодействии с другими части-цами. Например, превращения пары электрон и позитрон в два фотона: е - + е + -> 2γ

Подобные же взаимопревращения происходят и с другими элементарными частицами.

Рис. 2. Структура атома

7. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИХ СВОЙСТВА

В соответствии с достижениями квантовой физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности.

Развитие физики микромира показало неисчерпаемость свойств элементарных частиц и их взаимодействий. Все частицы, имеющие достаточно большую энергию, способны к взаимопревращениям, но при соблюдении ряда законов сохранения. Число известных элементарных частиц постоянно растет и превышает уже 300 разновидностей, включая неустойчивые резонансные состояния. Важнейшим свойством частицы является ее масса покоя. По этому свойству частицы делятся на 4 группы:

1. Легкие частицы - лептоны (фотон, электрон, позитрон). Фотоны не имеют массы покоя.

2. Частицы средней массы - мезоны (мю-мезон, пи-мезон).

3. Тяжелые частицы - барионы. К ним относятся нуклоны - составные части ядра: протоны и нейтроны. Протон - самый легкий барион.

4. Сверхтяжелые - гипероны. Устойчивых разновидностей немного: фотоны (кванты электромагнитного излучения); гравитоны (гипотетические кванты гравитационного поля); электроны; позитроны (античастицы электронов); протоны и антипротоны; нейтроны; нейтрино - самая загадочная из всех элементарных частиц.

Нейтрино играет большую роль в космических процессах во всей эволюции материи во Вселенной. Время их жизни практически бесконечно. По подсчетам ученых, нейтрино уносят значительную долю излучаемой звездами энергии. Наше Солнце теряет за счет излучения нейтрино примерно 7% энергии, на каждый квадратный сантиметр Земли перпендикулярно солнечным лучам ежесекундно падает примерно 300 миллионов нейтрино. Дальнейшая судьба этого излучения неизвестна, но, очевидно, нейтрино должно вновь включиться в круговорот материи в природе.

Особенностью элементарных частиц является то, что большинство из них могут возникать при столкновении с другими частицами достаточно высокой энергии: протон большой энергии превращается в нейтрон с испусканием пи-мезона. При этом элементарные частицы распадаются на другие: нейтрон - на электрон, протон и антинейтрино, а нейтральный пи-мезон - на два фотона. Пи-мезоны, таким образом, являются квантами ядерного поля, объединяющими нуклоны и ядра.

В ходе развития науки открываются все новые свойства элементарных частиц. Взаимная обусловленность свойств частиц свидетельствует о сложной их природе, наличии многогранных связей и отношений.

У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрических зарядов и магнитных моментов: антипротоны, антинейтроны и т.д. Из античастиц могут быть образованы устойчивые атомные ядра и антивещество, подчиняющееся тем же законам движения, что и обычное вещество. В больших количествах антивещество в космосе не обнаружено, поэтому существование «антимира», т.е. галактик из антивещества является проблематичным.

Таким образом, с каждым новым открытием строение микромира уточняется и оказывается все более сложным. Чем глубже мы уходим в него, тем больше новых свойств обнаруживает наука.

8. МОДЕЛИ ВСЕЛЕННОЙ, РАЗРАБОТАННЫЕ В СОВРЕМЕННОЙ КОСМОЛОГИИ

Современные космологические модели Вселенной основы-ваются на общей теории относительности А. Эйнштейна, со-гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологиче-ских моделей Вселенной. Первая модель была разработана са-мим Л. Эйнштейном в 1917 г. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однород-но и изотропно, материя в среднем распределена в ней равно-мерно, гравитационное притяжение масс компенсируется уни-версальным космологическим отталкиванием.

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме реши-тельно изменился.

В том же 1917 г. голландский астроном В. де Ситтер пред-ложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае "пустой" Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некото-рого рода космическое отталкивание между массами, стремя-щееся удалить их друг от друга и растворить всю систему. Тен-денция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

В 1922 г. российский математик и геофизик Л.А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космо-логической проблемы.

Решение уравнений А.А. Фридмана, допускает три возможно-сти.:

  1. если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния;
  2. если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется;
  3. если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором эта-пе сменяется сжатием, которое продолжается вплоть до первона-чального точечного состояния.

По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.е. пространст-венно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бес-конечности Вселенной пока преждевременно.

Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных га-лактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок даль-нейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

В 1929 г. американский астроном Э.П.Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,- система галактик расширяется.

Но то, что в настоящее время Вселенная расширяется, еще не позволяет однозначно решить вопрос в пользу той или иной модели.

9. ОСНОВНЫЕ ЭТАПЫ ЭВОЛЮЦИИ ВСЕЛЕННОЙ С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ НАУКИ

В качестве одного из наиболее вероятных сценариев эволюции Вселенной, в рамках которого удается решить большинство космологических проблем, современная космология рассматривает сценарий, включающий инфляционную стадию. Инфляция в переводе с латинского - вздутие. Инфляционная стадия предполагает процесс вздутия Вселенной. Основная идея инфляционной теории состоит в том, что и расширение Вселенной и весь последующий ход эволюционного развития рассматриваются из состояния, когда вся материя была представлена только физическим вакуумом. Однако в физическом смысле вакуум не есть пустота, в нем постоянно происходят процессы рождения и уничтожения всевозможных частиц, квантов, полей.

Модель Большого взрыва . Считается, что после того как 15 млрд. лет назад произошел Большой взрыв, началось постепенное охлаждение и расширение Вселенной. Причины Большого взрыва и перехода к расширению во всех моделях Вселенной считаются неясными и выходящими за рамки компетенции любой физической современной теории. Но если взрыв был, то дальше картина выглядит следующим образом:

1. Через 10 -43 с от начала расширения началось рождение частиц и античастиц.

2. Через 10 -6 с - возникновение протонов и антипротонов и их аннигиляция. Количество протонов на одну стомиллионную часть (10 -8) превышало количество антипротонов, в результате чего после аннигиляции возникло и сохранилось то вещество, из которого возникли все галактики, звезды и планеты. Если бы число протонов было бы равно числу антипротонов, то вещество полностью перешло бы в излучение и невозможно было бы наблюдение Космоса и Земли.

3. Через 1 с после начала расширения стали рождаться и аннигилировать электронно-позитронные пары.

4. Через 1 мин начались ядерный синтез и образование ядер дейтерия и гелия. На долю последних пришлось примерно 30% от массы оставшихся протонов. Образование более тяжелых элементов в рамках этой теории объяснить не удалось, так как не хватило времени для их синтеза в процессе расширения. Эти элементы образуются в последующей эволюции звезд в результате термоядерных реакций в их недрах, а тяжелые элементы синтезируются при взрыве сверхновых и затем выбрасываются в космическое пространство, где они со временем концентрируются в газово-пылевые облака, из которых образуются звезды второго поколения типа Солнца и планеты вокруг них.

Через 300 тыс. лет после Большого взрыва произошло отделение излучения от вещества, Вселенная стала прозрачной, в последующие миллиарды лет стали формироваться галактики, первичные звезды в шаровых скоплениях и звезды второго поколения в спиральных рукавах галактик.

10. ЗАКЛЮЧЕНИЕ

Издавна люди пытались найти объяснение многообразию и причудливости мира.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д.

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

Исходным пунктом всякого системного исследования является представление о целостности, изучаемой системы. Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.

В неживой природе в качестве структурных уровней организации материи выделяют элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и планетные системы, звезды и звездные системы - галактики, системы галактик - метагалактику.

В живой природе к структурным уровням организации материи относят системы доклеточного уровня - нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; надорганизменные структуры, включающие виды, популяции и биоценозы, и, наконец, биосферу как всю массу живого вещества.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной /С.Вайнберг. -М.: Наука, 1981
  2. Дорфман Я.Г. Всемирная история физики с начала века до середины века 8Я.Г.Дорфман. -М.: Наука, 1979
  3. Мэрион Дж.Б. Физика и физический мир /Дж.Б.Мэрион. -М.: Мир, 1975
  4. Хорошавина С.Г. Концепции современного естествознания: курс лекций / Изд. 4-е. - Ростов н/Д: Феникс, 2005
  5. Шкловский И.С. Звезды, их рождение, жизнь и смерть /И.С.Шкловский. -М.: Наука, 1977

Понравилось? Нажмите на кнопочку ниже. Вам не сложно , а нам приятно ).

Чтобы скачать бесплатно Контрольные работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Контрольные работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.

Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Если Контрольная работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.

6.2. Структурные уровни материи Микромир, Макромир, Мегамир.

6.3. Структуры макромира Механистическая концепция описания макромира.

6.4. Структуры микромира Квантово-механическая концепция описания микромира

6.1. Системная организация материи

Система - это определенная целостность, проявляющая себя как нечто единое по отношению к другим объектам или условиям.

В понятие системы входит совокупность элементов и связи между ними.

Под элементом системы понимается компонент системы, который далее, внутри данной системы, рассматривается как неделимый.

Причем элемент является таковым лишь по отношению к данной системе, в других же отношениях он сам может представлять сложную систему.

Под структурной организацией материи понимается ее иерархическое строение - любой объект от микрочастиц до организмов, планет и галактик является частью более сложного образования и сам может считаться таковым, т. е. состоящим из неких составных частей.

Совокупность связей между элементами образует структуру системы.

Устойчивые связи элементов определяют упорядоченность системы.

Существуют два типа связей между элементами системы:

Связи по «горизонтали » - это связи координации между однопорядковыми элементами. Они носят коррелирующий характер: ни одна часть системы не может измениться без того, чтобы не изменились другие части.

Связи по «вертикали » - это связи субординации, т.е. соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а также их иерархию.

Исходным пунктом всякого системного исследования является представление о целостности изучаемой системы.

Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

Свойства системы - не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом.

Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

Все системы делятся на закрытые , в которых отсутствуют связи с внешней средой, и открытые , связанные с внешней окружающей средой.

6.2. Структурные уровни материи Микромир, Макромир, Мегамир.

Под структурой материи обычно понимают ее строение в макромире, т.е. существование в виде молекул, атомов, элементарных частиц и т.д.

Критерием для выделения различных структурных уровней служат признаки:

    пространственно-временные масштабы;

    совокупность важнейших свойств;

    специфические законы движения;

    степень относительной сложности;

В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы .

В неживой природе в качестве структурных уровней организации материи выделяют:

Молекула - наименьшая частица вещества, сохраняющая его химические свойства. Молекулы состоят из атомов, соединенных химическими связями.

Теория химического строения молекул была создана А.М.Бутлеровым, а позже подтверждена квантово-механическими расчетами.

Под молекулярной структурой понимается сочетание атомов, которые имеют закономерное расположение в пространстве и связаны между собой химической связью с помощью валентных электронов.

Атом - составная часть молекулы.

Существование структуры атома было доказано Томсоном открытием в 1897 г. электрона.

Вслед за электроном были открыты элементарные частицы. Для упорядочения их группируют по времени жизни, участию в разных типах фундаментальных взаимодействий и другим признакам.

Микромир - мир очень малых микрообъектов, размеры которых от 10 -10 до 10 -18 м, а время жизни может быть до 10 -24 с. Испускание и поглощение света происходит порциями, квантами, получившими название фотонов. Это мир - от атомов до элементарных частиц.

При этом для микромира свойственен корпускулярно-волновой дуализм, т.е. любой микрообъект, обладает как волновыми, так и корпускулярными свойствами.

Описание микромира опирается на принцип дополнительности Н. Бора и соотношения неопределенности Гейзенберга . Мир элементарных частиц, которые долго считали элементарными «кирпичиками», подчиняется законам квантовой механики, квантовой электродинамики, квантовой хромодинамики.

Макромир - это мир объектов, соизмеримых с человеческим опытом. Размеры макрообъектов измеряются от долей миллиметра до сотен километров, а время - от секунд до сотен – тысяч лет. Поведение же макроскопических тел, состоящих из микрочастиц, описывается классической механикой и электродинамикой.

Материя может пребывать как в виде вещества, так и в виде поля, причем вещество дискретно, а поле - непрерывно.

Скорости распространения поля равны скорости света, максимальной из возможных скоростей, а скорости движения частиц вещества всегда меньше скорости света.

Мегамир - мир объектов космического масштаба: планеты, звезды, галактики, Метагалактика. Кроме них во Вселенной присутствуют материя в виде излучения и диффузная материя. Последняя может занимать огромные пространства в виде гигантских облаков газа и пыли - газо-пылевых туманностей.

В звездах сосредоточено 97 % вещества нашей Галактики - Млечный Путь.

Диаметр Галактики порядка 100 тыс. св. лет;

Cветовой год равен расстоянию, которое свет проходит в вакууме, не испытывая влияния гравитационных полей, за один юлианский год..

Световой год равен: километрам.

Наше Солнце - рядовая звезда типа «желтый карлик».

Галактики (их до 10 млрд), наблюдаемые с Земли как туманные пятнышки, имеют разную форму: спиральную, неправильную, эллиптическую. Они образуют скопления из нескольких тысяч отдельных систем.

Систему галактик называют Метагалактикой .

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Мегамир описывается законами классической механики с поправками, которые были внесены теорией относительности.

Разграничения уровней организации живого ввел в 60-е годы ХХ века отечественный философ В.И. Кремянский, в своей книге “Структурные уровни живой материи” (1969) обобщив предшествующий опыт уровневых классификаций.

В живой природе к структурным уровням организации материи относят:

    системы доклеточного уровня – нуклеиновые кислоты (ДНК, РНК) и белки (включая вирусы и неклеточные пробионты – первые живые организмы способные к саморегуляции и самовоспроизведению).

    клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества;

    многоклеточные организмы растительного и животного мира;

    надорганизменные структуры , включающие виды, популяции и биоценозы, наконец, биосферу как всю массу живого вещества.

Популяция (биотоп) – совокупность (сообщество) особей одного и того же вида (например, стая волков), которые могут скрещиваться и воспроизводить себе подобных

Биоценоз - совокупность популяций организмов, при которых продукты жизнедеятельности одних являются условиями существования других организмов, населяющих участок суши или воды.

Биосфера - глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т.п.), образованная в результате взаимодействия биоценозов.

Общая основа жизни на биологическом уровне - органический метаболизм (обмен веществом, энергией и информацией с окружающей средой) - который проявляется налюбом из выделенных подуровней.

СТРУКТУРНЫЕ УРОВНИ МАТЕРИИ

Неорганическая природа

Живая природа

Общество

Субмикроэлементарный

Биологический макромолекулярный

Индивид

Микроэлементарный

Клеточный

Семья

Ядерный

Микроорганический

Коллективы

Атомарный

Органы и ткани

Большие социальные группы (классы, нации)

Молекулярный

Организм в целом

Государство (гражданское общество)

Макроуровень

Популяции

Системы государств

Мегауровень (планеты, звездно-планетные системы, галактики)

Биоценоз

Человечество в целом

Метауровень (метагалактики)

Биосфера

1. Введение.

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.

1. Что такое материя. История возникновения взгляда на материю.

Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. С точки зрения марксистско-ленинского понимания материи, она органически связана с диалектико-материалистическим решением основного вопроса философии; оно исходит из принципа материального единства мира, первичности материи по отношению к человеческому сознанию и принципа познаваемости мира на основе последовательного изучения конкретных свойств, связей и форм движения материи.

В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

Материя как объективная реальность включает в себя не только вещество в четырех его агрегатных состояниях (твердом, жидком, газообразном, плазменном), но и физические поля (электромагнитное, гравитационное, ядерное и т. д.), а также их свойства, отношения, продукты взаимодействия. Входит в нее и антивещество (совокупность античастиц: позитрон, или антиэлектрон, антипротон, антинейтрон), недавно открытое наукой. Антивещество ни в коем случае не антиматерия. Антиматерии вообще быть не может. Дальше «не» (не-материи) отрицание здесь не идет.

Движение и материя органически и нерасторжимо связаны друг с другом: нет движения без материи, как нет и материи без движения. Иначе говоря, нет в мире неизменных вещей, свойств и отношений. «Все течет», все изменяется. Одни формы или виды сменяются другими, переходят в другие – движение постоянно. Покой – диалектически исчезающий момент в беспрерывном процессе изменения, становления. Абсолютный покой равнозначен смерти, а вернее – несуществованию. Можно понять в данной связи А. Бергсона, рассматривавшего всю реальность как неделимую движущуюся непрерывность. Или А.Н.Уайтхеда, для которого «реальность есть процесс». И движение, и покой с определенностью фиксируются лишь по отношению к какой-то системе отсчета. Так, стол, за которым пишутся эти строки, покоен относительно данной комнаты, она, в свою очередь, - относительно данного дома, а сам дом – относительно Земли. Но вместе с Землей стол, комната и дом движутся вокруг земной оси и вокруг Солнца.

Движущаяся материя существует в двух основных формах – в пространстве и во времени. Понятие пространства служит для выражения свойства протяженности и порядка сосуществования материальных систем и их состояний. Оно объективно, универсально (всеобщая форма) и необходимо. В понятии времени фиксируется длительность и последовательность смены состояний материальных систем. Время объективно, неотвратимо и необратимо. Следует различать философские и естественнонаучные представления о пространстве и времени. Собственно философский подход представлен здесь четырьмя концепциями пространства и времени: субстанциальной и реляционной, статической и динамической.

Основоположником взгляда на материю, как состоящую из дискретных частиц был Демокрит.

Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. Демокрит называет атомы также «фигурами» или «видиками», из чего следует, что атомы Демокрита являются максимально малыми, далее неделимыми фигурами или статуэтками. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их «вихря» по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно.

Мир доступной человеку объективной реальности постоянно расширяется. Концептуальные формы выражения идеи структурных уровней материи многообразны.

Современная наука выделяет в мире три структурных уровня.

2. Микро, Макро, Мега миры.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно­сти до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за еди­ницу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен­тов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрица­тельный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электриче­ский заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характе­ристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных со­стояний (говоря языком планетарной модели, несколько ста­ционарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состоя­ния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основа­нии представления об орбитах точечных электронов принципи­ально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это по­следнее усилие описать структуру атома на основе классиче­ской физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь час­тично. Ответы на эти вопросы были получены в результате раз­вития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макро­мире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир . В истории изучения природы можно выделить два этапа: донаучный и научный .

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мира - механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы - научно-теоре­тического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука » .

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Нью­тоном и его последователями, сложилась дискретная (корпус­кулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Движение рассматривалось как перемещение в пространст­ве по непрерывным траекториям в соответствии с законами механики.

Итогом ньютоновской картины мира явился образ Вселен­ной как гигантского и полностью детерминированного меха­низма, где события и процессы являют собой цепь взаимозави­симых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформу­лированной X. Гюйгенсом. Волновая теория устанавливала ана­логию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспы­татель X. К. Эрстед, который впервые заметил магнитное дей­ствие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное измене­ние в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его рабо­ты стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии » .

Исхо­дя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущ­ность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж. К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г.

После экспериментов Г. Герца в физике окончательно ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказа­лись разрушенными представления классической физики о ве­ществе и поле как двух качественно своеобразных видах материи.

Мегамир . Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высо­кого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему га­лактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеоб­разном стыке науки, религии и философии. В основе космо­логических моделей Вселенной лежат определенные мировоз­зренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти та­кой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Современные космологические модели Вселенной основы­ваются на общей теории относительности А. Эйнштейна, со­гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свой­ства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселен­ной А. Эйнштейна мировое пространство однородно и изо­тропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсаль­ным космологическим отталкиванием.

Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922г. русский математик и геофизик А.А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”

Эра адронов . Тяжелые частицы, вступающие в сильные взаи­модействия.

Эра лептонов. Легкие частицы, вступающие в электромагнит­ное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная до­ля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой кос­мологией. В этой модели описывается эволюция Вселенной на­чиная с момента 10 -45 с после начала расширения.

Сторонники инфляционной модели видят соответствие ме­жду этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии .

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10 -50 см

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспо­ненциальному закону. В этот период создавалось само про­странство и время Вселенной. За период инфляционной стадии продолжительностью 10 -34 . Вселенная раздулась от невообра­зимо малых квантовых размеров 10 -33 до невообразимо больших 10 1000000 см, что на много порядков превосходит раз­мер наблюдаемой Вселенной - 10 28 см. Весь этот первоначаль­ный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осве­тившего космос.

Этап отделения вещества от излучения: оставшееся после ан­нигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от веще­ства излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и эксперименталь­но обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все бо­лее сложных структур - атомов (первоначально атомов водоро­да), галактик, звезд, планет, синтезу тяжелых элементов в не­драх звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека.

Различие между этапами эволюции Вселенной в инфляци­онной модели и модели Большого взрыва касается только пер­воначального этапа порядка 10 -30 с, далее между этими моделя­ми принципиальных расхождений в понимании этапов косми­ческой эволюции нет.

Пока же эти модели с помощью знаний и фантазии можно рассчитывать на компьютере, а вопрос остается открытым.

Самая большая трудность для ученых возникает при объяс­нении причин космической эволюции. Если отбросить частно­сти, то можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма .

Для концепции самоорганизации материальная Вселенная яв­ляется единственной реальностью, и никакой другой реально­сти помимо нее не существует. Эволюция Вселенной описыва­ется в терминах самоорганизации: идет самопроизвольное упо­рядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок.

В рамках концепции креационизма , т.е. творения, эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существова­ние во Вселенной направленного номогенца - развития от простых систем ко все более сложным и информационно ем­ким, в ходе которого создавались условия для возникновения жизни и человека. В качестве дополнительного аргумента при­влекается антропный принцип, сформулированный английскими астрофизиками Б. Карром и Риссом.

Среди современных физиков – теоретиков имеются сторонники, как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научно – технической картины мира, синтезирующей все достижения в области знания и веры.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические , спиральные , неправильные .

Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь.

Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики .

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной веще­ство в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселен­ной, до сотен тысяч - самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, бла­годаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Ос­новная эволюция вещества во Вселенной происходила и проис­ходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные сис­темы состоят из двух, трех, четырех, пяти и больше звезд, об­ращающихся вокруг общего центра тяжести.

Звезды объединены также в еще большие группы - звезд­ные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчи­тывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч.

Ассоциации, или скопления звезд, также не являются неиз­менными и вечно существующими. Через определенное коли­чество времени, исчисляемое миллионами лет, они рассеивают­ся силами галактического вращения.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спут­ников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вра­щаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве слу­чаев в экваториальной плоскости своей планеты. Солнце, пла­неты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: ка­ждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливав­шихся в газово-пылевых облаках. Это обстоятельство дает ос­нование назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца об­разовалась в результате действия сил притяжения и отталкива­ния между частицами рассеянной материи (туманности), нахо­дящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образо­вание Солнечной системы послужила гипотеза английского фи­зика и астрофизика Дж. X. Джинса. Он предположил, что ко­гда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразо­валась в планеты.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнит­ные. Эта идея была выдвинута шведским физиком и астрофи­зиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первона­чальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались не­большие части этого облака. Гравитационная сила стала при­тягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях - как раз там, где находятся планеты. Гравитаци­онная и магнитные силы повлияли на концентрацию и сгуще­ние падающего газа, и в результате образовались планеты. Ко­гда возникли самые крупные планеты, тот же процесс повто­рился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невоз­можно. Во всех существующих теориях имеются противоречия и неясные места.

В настоящее время в области фундаментальной теоретиче­ской физики разрабатываются концепции, согласно которым объ­ективно существующий мир не исчерпывается материальным ми­ром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выво­ду: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Вывод.

Издавна люди пытались найти объяснение многообразию и причудливости мира.

Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.

Список литературы:

1. Большая Советская энциклопедия

2. Карпенков С.Х. Концепции современного естествознания. М.: 1997

3. Философия

http://websites.pfu.edu.ru/IDO/ffec/ hilos-index.html

4. Владимиров Ю. С. Фундаментальная физика и религия. - М.: Архимед, 1993;

5. Владимиров Ю. С., Карнаухов А. В., Кулаков Ю.И. Введение в теорию физических структур и бинарную геометрофизику. - М.: Архимед, 1993.

6. Учебное пособие «Концепции современного естествознания»


Кузнецов Б.Т. От Галилея до Эйнштейна - М.: Наука, 1966. - С.38.

См.: Кудрявцев П.С. Курс истории физики. - М.: Просвещение, 1974. - С. 179.

См.: Дубнищева Т.Я. Указ. Соч. – С. 802 – 803.

См.: Гриб А.А. Большой взрыв: творение или происхождение? /В кн. Взаимо­связь физической и релиптозной картин мира. - Кострома: Изд-во МИИЦАОСТ, 1996. - С. 153-166.

В своем формировании категория «материя » (как субстанция мира) прошла три этапа или так называемые три исторические формы материализма:
На первом этапе материя отождествлялась с конкретной природной стихией, с конкретным видом вещества: водой (Фалес), воздухом (Анаксимен), огнем (Гераклит), атомами (Демокрит). Этот этап носит название стихийного материализма древних.

Второй этап носит название механистического, метафизического материализма. Он был характерен для . Развитие в XVII-XVIII вв. математики и механики coдействовало изучению природы и обогащению представлений о материи. В новоевропейской философии материя наделялась рядом атрибутивных свойств, которые были изучены в рамках классической науки того времени (механики Ньютона) - массой, протяженностью, инерцией, неделимостью, непроницаемостью и т.д. Носителем этих свойств выступали различные проявления первовещества (элементы, корпускулы, атомы). На этом этапе завершается построение механистической картины мира. Эта картина мира сложилась в результате научной революции XVI-XVII вв., оформилась в целостное образование к XVIII веку и господствовала на протяжении XIX века. Основу механистической картины мира составил атозм, который весь мир, включая и человека, понимал как совокупность огромного числа атомов, перемещающихся в пространстве и времени. Ключевым понятием было понятие движение. Однако все многообразие форм и видов движения в природе сводилось к механическому движению (к простому перемещению тел И пространстве). Кроме того, в качестве движения предполагался некий первотолчок, находящийся за пределами мира. Отсюда и знание - механистический, метафизический материализм.

Следует отметить, что для первого и второго этапов характерно представление о материи как о субстрате, т.е. как о строительном материале, из которого состоит все в мире. Кроме того, эти этапы были тесно связаны с уровнем развития научного знания своего времени. В XIX веке совершается ряд научных открытий:
- физика проникает в микромир;
- наряду с веществом вводится понятие электромагнитного поля (Фарадей, Максвелл);
- открывается явление радиоактивности;
- атом перестает быть конечным пределом делимости материи;
- А. Эйнштейн создает теорию относительности.

Все это способствовало появлению убеждения, что нельзя материю отождествлять с веществом , с каким-то конкретным ее видом, т.к. наука постоянно развивается, и как следствие этого меняются представления о мире. В философии возникла выработать такое представление о материи, которое характеризовало бы ее любые формы, виды, независимо оттого, познаны они уже или нет, и независимо от того, какими конкретными свойствами и качествами эти формы и виды обладают.

Третий этап - это этап возникновения материализма. В диалектико-материалистической традиции были окончательно разведены конкретно-научный и философские подходы к пониманию материи, а в ее определении, сформулированном В.И. Лениным, из всего многообразия свойств в качестве самого главного было выделено свойство материи быть объективной реальностью, т.е. не зависеть от . Причем, в диалектико-материалистической традиции материя, как объективная реальность охватывает не только мир , но социум т.е. объективные процессы в обществе.

Материя - это Философская категория для обозначения объективной реальности, существующей независимо от человеческого сознания и отображаемой им. Понятие материя - это абстракция. Не существует материя как таковая вообще, как и человек вообще, стол вообще, т.е. как нечто чувственно воспринимаемое, как нечто положенное рядом с вещами. Материя существует в конкретных бесконечно многообразных видах и форма вещей, процессов, явлений, состояний. Ни один из этих видов, форм и состояний не может быть отождествлен с материей, но все и многообразие, включая их связи и взаимодействия, составляю материальную действительность.

В основе современных научных представлений о строении материи лежит идея о ее сложной системно-структурной организации. Материя - это не сплошное однородное целое . Она структурно организована, и эту структурную организацию можно обнаружить в любом ее элементе. К тому же структура материи не является одноуровневой. Она представляет собой многообразие качественно своеобразных материальных форм различной степени-сложности.